US009110819B2

a2 United States Patent

Cilfone et al.

US 9,110,819 B2
*Aug. 18, 2015

(10) Patent No.:
(45) Date of Patent:

(54) ADJUSTING DATA DISPERSAL IN A
DISPERSED STORAGE NETWORK
(71) Applicant: CLEVERSAFE, INC., Chicago, I,
(US)
(72) Inventors: Bart Cilfone, Chicago, IL (US); Jason
K. Resch, Chicago, IL. (US); S.
Christopher Gladwin, Chicago, IL. (US)

(73)

")

Assignee: Cleversafe, Inc., Chicago, IL. (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

@
(22)

Appl. No.: 14/148,652

Filed: Jan. 6,2014

Prior Publication Data

US 2014/0122969 A1 May 1, 2014

(65)

Related U.S. Application Data

Continuation of application No. 13/946,136, filed on
Jul. 19, 2013, now Pat. No. 8,627,178, which is a
continuation of application No. 12/983,214, filed on
Dec. 31, 2010, now Pat. No. 8,495,466.

Provisional application No. 61/314,166, filed on Mar.
16, 2010.

(63)

(60)

Int. Cl1.
GO6F 11/00
GO6F 11/10
GO6F 1120
HO3M 13/35
HO4N 21/218
U.S. CL
CPC

(51)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2011.01)
(52)
GOGF 11/10 (2013.01); GOGF 11/1076
(2013.01); GOGF 11/2094 (2013.01); GO6F

2211/1028 (2013.01); HO3M 13/35
(2013.01);HO3M 13/356 (2013.01); HO4N
2172181 (2013.01)
(58) Field of Classification Search
CPC .. GO6F 11/10; GO6F 11/1076; GOG6F 11/2094
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,774,643 A *
7,636,724 B2

6/1998 Lubbersetal. 714/20
12/2009 de la Torre et al.

(Continued)
OTHER PUBLICATIONS

Kubiatowicz, et al.; OceanStore: An Architecture for Global-Scale
Persistent Storage; Proceedings of the Ninth International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2000); Nov. 2000; pp. 1-12.

Primary Examiner — Charles Ehne
(74) Attorney, Agent, or Firm — Garlick & Markison;
Timothy W. Markison

(57) ABSTRACT

A method begins with a processing module determining that
storage of data requires updating, wherein the data is stored as
aplurality of sets of encoded data slices in DSN memory. For
a first type of updating, the processing module increases the
total number while maintaining the decode threshold number.
The processing module then, for each set of encoded data
slices, creates another encoded data slice in accordance with
the dispersed storage error encoding function and the
increased total number and sends the new encoded data slices
to the DSN memory. For a second type of updating, the
processing module increases the total number and the decode
threshold number. The processing module then recovers the
data and encodes it in accordance with the dispersed storage
error encoding function using the increased total number and
the increased decode threshold number to produce an updated
plurality of sets of encoded data slices.

16 Claims, 13 Drawing Sheets

user device 12

DS processing unit 16

data file 38&/or

computing core 26

DS
processing 34

computing core 26

DS processing 34

DSN interface 32| [[interface 30 |

data block 40
computing
core 26

interface 30

DSN interface 32

user device 14

oL slicesa

~TTNS

network 24

ECslice 1 142 | @@ [ECslice 1 X244

. .
. .
. .

ECslice Y_145 | @@ [ECslice Y_X48

computing
core 26

»[ECslice1 142]

DS managing
unit 18

DSN interface 32 0

I| EC slice 1.X44 |

¥ [ecsticev_126 |

[[ecslice v_xa8 |

storage integrity
processing unit 20

computing | I
core 26

computing system10

US 9,110,819 B2

Page 2
(56) References Cited 2003/0018927 Al* 12003 Gadiretal.cooeeene. 714/4
2007/0079081 Al* 4/2007 Gladwin etal. . 711/154
U.S. PATENT DOCUMENTS 2007/0079082 Al* 42007 Gladwinetal. 711/154
2010/0241920 Al* 9/2010 Nonogakiccevne. 714/752

8,527,705 B2* 9/2013 Gladwinetal. 711/118 . .
2002/0194427 Al* 12/2002 Hashemicc.ccovvunne. 711/114 * cited by examiner

US 9,110,819 B2

Sheet 1 of 13

Aug. 18, 2015

U.S. Patent

r—= - T T T T T —
A I
ST STARATOS | ¢ Aowsw (NSQ) 3 iomisu odei0ls pasdadsip | 0z 1un Suissasoud
_ Apudajul agesols
751 _ ! —
_ | 97 2402
— | Sunndwoo
87 X A 921s03
— [X T) [X I) M 7€ soepLIUI NSQA
8T Hun — — =
uiSeuew g PrX 18503 | Y Zy T 101533 A A
(Y X
9z aloo -
Sunndwoo i .
L S¥ $90115
£€ 92Bl91UI | > (qum 3Jom1au
" —=
[87X 2201503 |eee| G717 A2d1s03 |
°] TTsaos — . |~
®) -
®)
[77X 1200553 |eee| ZHTT200s03 | see
— (X 1) —
YT 921A8p Jasn _ Z€ 92epa1ul NS _
Y Y A
0E 20BLRIUI e . V“ OF 20eLI21Ul _ _ 7€ 99BlaIUI NSQ _ 7
— VQ % € 8uissadoud
9¢ 2402 —
Suanduwo _ 7€ 8uissasoud sq _ sa
§¢ 2402 3unndwod 9¢ 202 unndwod
0% »ojq elep
J0/28E 9| ejep 9T 1un Buissacoud sg ZT 921A3p Jasn

US 9,110,819 B2

Sheet 2 of 13

Aug. 18, 2015

U.S. Patent

'9ld
|
97 a|npow 7 a|npow ZZ 2|nhpow S3e93ul 0Z a|npow 29 a|npow 99 a|npow
22ejJ23ul NSA 20eja3ul aH yseyy 201Ul uomiau S0elJ2ul vaH 208Ul gsn
_ A A A A
I
| v
_ A Y
I
| 85 39BlS1UI [Dd 9
| SOIg WOY
I
| ¢
_ Z9 9|hpow
_ 35 «>| 9FFH e 5 S2BLISIUI
_ oo gl [7 ol il .
| S21A3p O
I
I
_ ySAowsw | | ZGusjjouon | 0S snpow
| ulew ke Alowsaw o~ 8uissasoud
I
I
I
I
I
I
I

&< 1un Suissasoud
so1ydeJs oapia

97 2402 8unndwood

|

US 9,110,819 B2

Sheet 3 of 13

Aug. 18, 2015

U.S. Patent

8% XA 90I|S B1EP POpOD JOIIB Old 9¥ T~ A @01|S EIEp PapOd J0LIB
sweu 221§ aweu ad1[§
N == N
e _ 7€ 90BJ431UI 19USQ _ e
[] []
77 X T 921IS B1Rep PRpPOd 10U — eoe | 7% 17T 921|S e1ep POpOD JOLIB
sweu 221|§ [— aweu 321[S
BF X A921s coe P T A90lls
elep papol oz elep papo2 oz _ ¥ 3|npow adelols _
aweu adl[S ° aweu aI|§
°
— —_— . — e
v X 1T 92I[s PN ¢ T T 92ls
B1Rp PopPO2 J0IID el1Ep PapOd J0IJD
awieu 221|§ auwleu 221|S
Z8 9|npow pusd
sweu eeq | asas | usBanep | arynea | xspuiaoys
2412ads uonEWIOU| SULNOY |BSIBAIU
yineA newoju] 3ulnoy [esiaAuN
7€ sweu 301 oF 1walgo
— elep
76 A luswgos eyep
Py _ 08 2|npou 552008 _ 88 atueu
— 3[qo
06 T Jusw3ss elep A
Q¢ 2WeU 32Jnos I8 dl
Jasn
=12l Y 3
0t 199[qo elep — S| €«———>
— 87 a|npow Aemaled £ |le——>
ST sWeU 924n0S g
<
RED _ ASD) _ uagnep | qrynep
GE aWeu 324n0S P€ a|npow Fuissaooud 5@

US 9,110,819 B2

Sheet 4 of 13

Aug. 18, 2015

U.S. Patent

t 321|s ejep I3

€ 901s e1ep 13

Z 391Is €1ep I3

T 391Is €18p I3

_ﬁmn_nNn_mmn__mﬁo__ﬂn_:n_nn__mn_

_OMn__mNn__Nmn__mﬁo__ﬁn__oﬁn__mn__Nn__

&5

_mNn__mNn_En__Do__ﬂn_mn__mn__ﬁn__

6L 4921Is <

_mwn_ﬁn_cmn__ﬁo__ﬁn_mn__qn_on_

[Fq |eee[q|“qg|eee| | eee EQQQEQQQE

76 1uawgas e1ep papodua Jo sUq 7€

Z8 s|npow pig

— — I
| 58 Joiendiuew — } — £g Joie|ndivew
_ -ap 321|5-3s0d <> [34N59p > 5849p0odIp A_ > -9p 921|s-a4d _
I
I
| . | |
| £ 1un joJu0d u__:gw.__ _
I
_ X 391 e1ep 3 _ " _ _
— p I
® T8 Joieindiuew — — §Z Jore|ndivew
” < __ > 921|5-150d <> 6L 12305 > LLIpoduD 221|5-24d _
| wewseepos | |
76 usW33s ejep pospodus _ _ 26-06 usw3as elep

US 9,110,819 B2

Sheet 5 0of 13

Aug. 18, 2015

U.S. Patent

ul2Jay3 o8el01s 40y 135 53e101s
1lun §Q O3 S9DI[S Bl1EP PSPOIUS PUSS

§TT A

S901|S
elep papodus 3onpold 01 elep 8y} SPodIUd

3Tt A

195 2884015 UUN S DUILLISIDP

7T A

sigloweled jeuonel ado 2UllWILlap

~

i {

wucmELOth pelewnse yun §g 2uUlla1ap

(e

i f

AJO1sIY @2uewIopad 1UN SO SUIWIRLISP

goT »

sjuswadinbay aUlWI91ap

90T A
elepelal sulwislap
ol A
a8essaw Huw.EO E1ED 910]1S JAladal
0T

US 9,110,819 B2

Sheet 6 of 13

Aug. 18, 2015

U.S. Patent

195 28e401S HUN §g MaU
931 01 PUBLULLIOD 24015 YUM SDI|S elep
papo2u? JO 135 PUOI3S 3Y3 JO AWOS pUDS

T A

<
i

S90I|S P1EP PIPODUD JO 195 PUOISS E 918310

7ET A
195 28eJ01S 1UN §Q M3U dUILIBIAP
05T A

sialaweded [euonesado
pa1snipe scuewJoyad suiwlslep

cl *

HUQEO elep o1eaudal

37T A
S9D1|S BIEP POPOIUS SA3IRI
77T A

silaweled |eu OEmeQO auiwJalap

o

ZTT A

a8ueyd

11un s a8ueys 014

sJalsweled |euonesado Jo/pue 195 93eI01S

3YIBYM BUlwIBIBp

™~

7T A

3cuewWIOMad PAlRWNSa HUN SO 2UIWIDIAP

=]
—

OTT A

AJoisIy asuewlopad HUN §a dUIWI1BP

20T A

sjuawalinbal oulWialap

30T A
elepelsw auiwialap
70T A
195 adeJols 1un sg sulwJa1sp
ocT pe

US 9,110,819 B2

Sheet 7 of 13

Aug. 18, 2015

U.S. Patent

VT d 19s uswgas

OVT Y 195 uawdas

8¢

195 uawdas

V8 'Old
cd 8as 7d 8as 1d 8as
gy gas /Y 8os gy 8as Y 89S ¢y 8as 7Y 8as
g uawdas | 7 wawdas | g uowdos | g usawdas | uawsdas | € uswdas | z wuawdas | T juswdas
¥ elep C elep
) 7 Elep T elep T
>H_Uw_ha € elep Ajuond € ejep Ajuod-uou Aruoud >uu_hw_ho_ Awoud | erep Awond-uou

9¢ET 173lqo ezep

US 9,110,819 B2

Sheet 8 of 13

Aug. 18, 2015

U.S. Patent

£FT saolls

BlEp Papodud

Auloud jo

$195 Jo Ayjeund

VT d 19s wawsas

BET sadlls

B1EP PIPOdUS JO

s19s Jo Ajjeund

8€T 195 JuUawdas

8 €d 0[S 8 ¢d a2I|s 8 Tda2|s

L €d3|s L Td 3s L Td3s CERBIE]

9 €d a|s 9 7d ¥lIs 9 Td ad|s

G £d aols S 7d @o1s S Td@dls

¥ €d9d1s ¥ Td dls ¥ Tdadls

£ €d d01|s € 7d I|s € Td 1|5

7 €d2|s 27 7d 215 7 Tdas

T €d s T Td dls T Td s

€d 8es 7d 895 Td 8es
v 83ds | v £aons | $9gavns | yga0us | yyaons | ¢ gddls |y oS | ¢ Taols
€80ls | €415 | €930s | €605 | €F201s | €€ | €25 | £ T3S
T8s | zz9ons | T9sous | ZTgeols | Tyedns | gogdds | Zgdvns | T Teols
T 8a00s | T7z9oys | T79800s | T7g@s | T vadys | T €8s | T gads [T Tads
g Wawgdas | 7 wawsdas | guawdas | guswdas | ¢ uswsdas | ¢ wwawdas | z uawdas | T uawdas
P elep Z elep
) T e1ep T eep T

>UH_“M_MQ ¢ elep Ayuond ¢ elep Aluond-uou Auoud >uu_hw_m__n Asond | erep Aoud-uou

gET 1a3lqo erep

US 9,110,819 B2

Sheet 9 of 13

Aug. 18, 2015

U.S. Patent

28eJ03s Joj 195 a8eJ01S HUN S PUOIAS 3y}
01 s321s ejep papooua Ayoud ayy puas

59T A

[Xe]
—

$921|S elep papooua Ajuoud
aonpoJd o1 sjusw8ss elep Aluolid spodus

28e.03s Joj 195 98eJ03s 1UN sQ
1S/ Sy} 01 S32I|S B1EP PIPOIUT BY] pUIS

05T A

79T A

<t
I

sialowedled jeuonesado
1544 Suizijun sa01|s e1ep papodus adnpoud

125 a8eJols Hun §Q pPuodas pue
sis19wWwesed [euollelado puodas SuIWIS1ap

ST A

125 28eJ03s HUN S I5JY B SUIWISIRP

FTT A

sia}oweled |euonesado siy aulwialap

43 A

SoueLIopd palewnsa 1UN g SUIWISIP

79T A

ojul {sjiuswgss elep Aluold oaes
09T A

(s)ruswSss erep Andond sulwislep
3T A

oTT A

(=]

(sjuswos ejep
Ajuoud a1eaud 03 yoseoudde sulwialsp

AJoisiy asuewlopad Jun §q sulWIlap

o r

[Xe]
—

A

mucmc_mt:cmg sulWIalap

o7 x

ElEPElSW SUlWialap

S1USWEaS
elep AlJolid 918340 01 J9Y18YyM BUIWIB1SP

¥0T A

obessall 190[q0 elep 210)s dAI80dl

o~
—

ot A

]

US 9,110,819 B2

Sheet 10 of 13

Aug. 18, 2015

U.S. Patent

J9159nbaJ 01 BIEP PUSS

Q)

81 A

elep
Aluond-uou Jo/pue elep Aluold a1e9133)

Yol

1 A

gnoud

(s)usw3as erep Apoud a1eaudsu

76T A

325 28eJ03S HUN §(pU0IAS
WO} $321[S elRp papoaus Ajiold ansiyal

pa1ea.idaJl usaq
aAey slUaWSas elep YSnoua Ji sulwIdIap

vt A

i f

195 98eJ01S 11UN G PUOIBS pue
slalaweled |euonelado puUOISS AUILWIABP

sjuswgas ElEP 9]€a40al

[7A% A

o
I

A

>

o k

IX8U J3A0D3U
01 (s)1uswsdas erep Ayuond suiwislap

19s 28eI01S
Hun S 3544 Y3 WOy Sa01|s A1l

O
—

0zt A

o
—

N

98essaw
|Ie} puss

o
I

195 98e.01S 1UN 5 1Sy B SUIWIS13P

o £

sJa1oweled |euopelado Isiy SUlWI1ap

(syauswgas
e1ep Aluoud ||e paisAcIal JI SUlWIS1Sp

s £

O

= f

obessowl 109[qo elep sAslal DAI928l

T

US 9,110,819 B2

Sheet 11 of 13

Aug. 18, 2015

U.S. Patent

T1°9H4
BY2ED WOJJ $33I|S Payded a19|ap
5027 A
uoLB30| 343ED 3Y] 3pN|IXa pue (s)

UoLRIO| HUN SO IPN|aUl 01 3|qe] UoHEIO|

|ea1sAyd o1 ssauppe NSQ@ |enHiA 8yl a1epdn
7ot |

ula1ay1 a3eJo1s Joj 195 33eJols
11Un 5 01 S3|S BIEP PIPOIUD PUBS
a|qe|leAr
gTT A

elep PapPoIUs 2Npol

S301|S

d o} elep ay3 apodus

SHUN S 3Y3 WOJ} [BAS1I134 0}
9|gB|IEAR 3JB S3DI[S AY} JOYIFYM BUIWIIIIP

T A

002 A

e

Q)
[

135 28eJ031S HUN §Q BUIWISIBP

T

UOLIED0| BYIED SPN[OUl O} J|(E1 UOLEDO0|
|eaisAyd o1 ssauppe NSQ |endiA 8y a1epdn

<
i

7T A

sJ191aweled |eu onesado SuUlWILlep

o~

T A

AJo1s1y Souewlopad HuN g AUIWIRISP

30T A

abessow 19981qo eyep 2101s dA1800)

8ET A
$21[S 3Y2ed
36T A
242ed 0] Sadl|s Yalym aullialap
7T A

]

a1 A

US 9,110,819 B2

Sheet 12 of 13

Aug. 18, 2015

U.S. Patent

Alowaw
Alesodwal wouy 321|s plIngad 213[3p

A

™~
—
(o]

uoLB20| BYJED BY} BPN|IXa PUe UoLedo|
1un sq Asewiud apnjaul 03 3|ge} UCLEDO|
|ed1sAyd 01 ssauppe NS |EnMIA 3yl S1epdn

W
—
(o]

a|ge|ieae

JUN S 9Y1 WOoJJ |BASLIIDJ 10} D|(B|IBAR S|
321|S B3RP PAPOIU BYY JBYIayM aUlWIISP

Tz A

-

UCLIED0| BYIED SPN[IUl 01 3|CB} UOLEDO|
|eaisAyd 01 ssauppe NS |enHIA 3y} a3epdn

T A
921|S }INg3J 3Yded
36T A

921|S }|INC3J BY2ED O BIIYM BUIWIDIBP

A

N
i
o

1un 5q Alewnd syl 01 PUBWIWOD
21015 B UM 321|S BIBP PSPOIUS pUdS

o
™~

[

\

301|S }INGRJ B Se 321|S elep

papooua aonpoud 03 103[qo ejep apoous

T A
103[qo elep 31403
57T A
S301|S B1EP D3 9ASIRI
77T A
mgwqumLmQ _mco_.._._m-_mQO SulWwIalep
71T A

AJo1s1y aouewJopad Hun sg aulWI313p

%0T A

195 98840315 HUN S SUIWIDISP
T A

BJEP P|INgaJ O] SUIUWIS)Op
502 A

US 9,110,819 B2

Sheet 13 of 13

Aug. 18, 2015

U.S. Patent

(s)uoneoo| ayoed wouy s321js Jef|id s18jap

o7 x

uoLE30| 2YJEI 8Y] BPN[IXa PUe ()
uoneIo| 1N §q spn[dul 01 3|gel UcLEIO|
|ea1sAyd o1 ssauppe NS |enHIA syl a1epdn

o
™~

a|ge|ieae

pI0YsaJy3 e sA0ge S| aduewIopad
195 28eJ015 1UN S e 1Ryl pue 195 38el0)s
JUN §Q Y3 WOoJ) 3|q.|IBAR SJB SII[S
B1EP PIPOOUS 3Y1 JOYIayMm SUIWIS13p

A

-

<]
~

T

T

(sjuoneso| ayoed spnjoul 0} 3|qe] UOLEIO|
|ea1sAyd o1 ssauppe NSJ |ENMIA 3Y1 a1epdn

36T A

[ole]

S30I[S B}EP PaPOIUD BYdBD

96T A

S221|5
B1EP PAPOOUD SYOED O] JYM JUIWIISP

e A

u13J3y} 28e.403s 404 195 38e401S
1un g 01 $321|S B1RP PIPOIUD PUDS
8T A
S30I[S
e1ep PapoduUd 3anpoud 01 e1ep Yl SpoduUd
aTT A
sia1oweled |euoyelado aUIwWIIap
T A
195 88eJ01S UUN §Q BUIWISISP
7T A
AJo1s1y sauewlopad Hun §qg sulwisiep
80T A
a8essow 123[q0 e1EP B401S BAISIDI

T r

US 9,110,819 B2

1
ADJUSTING DATA DISPERSAL IN A
DISPERSED STORAGE NETWORK

CROSS REFERENCE TO RELATED PATENTS

The present U.S. Utility patent application claims priority
pursuant to 35 U.S.C. §120 as a continuation of U.S. Utility
application Ser. No. 13/946,136, entitled “ADJUSTING
DATA DISPERSAL IN A DISPERSED STORAGE NET-
WORK,” filed Jul. 19, 2013, issuing as U.S. Pat. No. 8,627,
178, on Jan. 7, 2014, which is a continuation of U.S. Utility
application Ser. No. 12/983,214, entitled “ADJUSTING
DATA DISPERSAL IN A DISPERSED STORAGE NET-
WORK,” filed Dec. 31, 2010, now U.S. Pat. No. 8,495,466,
issued on Jul. 23, 2013, which claims priority pursuant to 35
U.S.C. §119(e) to U.S. Provisional Application No. 61/314,
166, entitled “STORAGE AND RETRIEVAL IN A DIS-
TRIBUTED STORAGE SYSTEM,” filed Mar. 16, 2010, all
of' which are hereby incorporated herein by reference in their
entirety and made part of the present U.S. Utility patent
application for all purposes.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not applicable

INCORPORATION-BY-REFERENCE OF
MATERIAL SUBMITTED ON A COMPACT DISC

Not applicable
BACKGROUND OF THE INVENTION

1. Technical Field of the Invention

This invention relates generally to computing systems and
more particularly to data storage solutions within such com-
puting systems.

2. Description of Related Art

Computers are known to communicate, process, and store
data. Such computers range from wireless smart phones to
data centers that support millions of web searches, stock
trades, or on-line purchases every day. In general, a comput-
ing system generates data and/or manipulates data from one
form into another. For instance, an image sensor of the com-
puting system generates raw picture data and, using an image
compression program (e.g., JPEG, MPEG, etc.), the comput-
ing system manipulates the raw picture data into a standard-
ized compressed image.

With continued advances in processing speed and commu-
nication speed, computers are capable of processing real time
multimedia data for applications ranging from simple voice
communications to streaming high definition video. As such,
general-purpose information appliances are replacing pur-
pose-built communications devices (e.g., a telephone). For
example, smart phones can support telephony communica-
tions but they are also capable of text messaging and access-
ing the internet to perform functions including email, web
browsing, remote applications access, and media communi-
cations (e.g., telephony voice, image transfer, music files,
video files, real time video streaming. etc.).

Eachtype of computer is constructed and operates in accor-
dance with one or more communication, processing, and
storage standards. As a result of standardization and with
advances in technology, more and more information content
is being converted into digital formats. For example, more
digital cameras are now being sold than film cameras, thus

10

15

20

25

30

35

40

45

50

55

60

65

2

producing more digital pictures. As another example, web-
based programming is becoming an alternative to over the air
television broadcasts and/or cable broadcasts. As further
examples, papers, books, video entertainment, home video,
etc. are now being stored digitally, which increases the
demand on the storage function of computers.

A typical computer storage system includes one or more
memory devices aligned with the needs of the various opera-
tional aspects of the computer’s processing and communica-
tion functions. Generally, the immediacy of access dictates
what type of memory device is used. For example, random
access memory (RAM) memory can be accessed in any ran-
dom order with a constant response time, thus it is typically
used for cache memory and main memory. By contrast,
memory device technologies that require physical movement
such as magnetic disks, tapes, and optical discs, have a vari-
able response time as the physical movement can take longer
than the data transfer, thus they are typically used for second-
ary memory (e.g., hard drive, backup memory, etc.).

A computer’s storage system will be compliant with one or
more computer storage standards that include, but are not
limited to, network file system (NFS), flash file system (FFS),
disk file system (DFS), small computer system interface
(SCSI), internet small computer system interface (iSCSI), file
transfer protocol (FTP), and web-based distributed authoring
and versioning (WebDAV). These standards specify the data
storage format (e.g., files, data objects, data blocks, directo-
ries, etc.) and interfacing between the computer’s processing
function and its storage system, which is a primary function
of the computer’s memory controller.

Despite the standardization of the computer and its storage
system, memory devices fail; especially commercial grade
memory devices that utilize technologies incorporating
physical movement (e.g., a disc drive). For example, it is
fairly common for a disc drive to routinely suffer from bit
level corruption and to completely fail after three years of use.
One solution is to utilize a higher-grade disc drive, which
adds significant cost to a computer.

Another solution is to utilize multiple levels of redundant
disc drives to replicate the data into two or more copies. One
such redundant drive approach is called redundant array of
independent discs (RAID). In a RAID device, a RAID con-
troller adds parity data to the original data before storing it
across the array. The parity data is calculated from the original
data such that the failure of a disc will not result in the loss of
the original data. For example, RAID 5 uses three discs to
protect data from the failure of a single disc. The parity data,
and associated redundancy overhead data, reduces the storage
capacity of three independent discs by one third (e.g.,
n-1=capacity). RAID 6 can recover from a loss of two discs
and requires a minimum of four discs with a storage capacity
ofn-2.

While RAID addresses the memory device failure issue, it
is not without its own failure issues that affect its effective-
ness, efficiency and security. For instance, as more discs are
added to the array, the probability of a disc failure increases,
which increases the demand for maintenance. For example,
when a disc fails, it needs to be manually replaced before
another disc fails and the data stored in the RAID device is
lost. To reduce the risk of data loss, data on a RAID device is
typically copied on to one or more other RAID devices. While
this addresses the loss of data issue, it raises a security issue
since multiple copies of data are available, which increases
the chances of unauthorized access. Further, as the amount of

US 9,110,819 B2

3

data being stored grows, the overhead of RAID devices
becomes a non-trivial efficiency issue.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

FIG. 1 is a schematic block diagram of an embodiment of
a computing system in accordance with the invention;

FIG. 2 is a schematic block diagram of an embodiment of
a computing core in accordance with the invention;

FIG. 3 is a schematic block diagram of an embodiment of
a distributed storage processing unit in accordance with the
invention;

FIG. 4 is a schematic block diagram of an embodiment of
a grid module in accordance with the invention;

FIG. 5 is a diagram of an example embodiment of error
coded data slice creation in accordance with the invention;

FIG. 6 is a flowchart illustrating an example of storing data
as encoded data slices in accordance with invention;

FIG. 7 is a flowchart illustrating an example of re-storing
data as encoded data slices in accordance with invention;

FIG. 8A is a diagram illustrating an example of data seg-
mentation of data in accordance with the invention;

FIG. 8B is a diagram illustrating an example of encoding
data segments in accordance with the invention;

FIG. 9 is a flowchart illustrating an example of segmenting
data in accordance with the invention;

FIG.10is a flowchart illustrating an example of re-creating
data in accordance with the invention;

FIG. 11 is a flowchart illustrating an example of caching
encoded data slices in accordance with the invention;

FIG. 12 is a flowchart illustrating an example of caching
rebuilt encoded data slices in accordance with the invention;
and

FIG. 13 is a flowchart illustrating another example of cach-
ing encoded data slices in accordance with the invention.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1is a schematic block diagram of a computing system
10 that includes one or more of a first type of user devices 12,
one or more of a second type of user devices 14, at least one
distributed storage (DS) processing unit 16, at least one DS
managing unit 18, at least one storage integrity processing
unit 20, and a distributed storage network (DSN) memory 22
coupled via a network 24. The network 24 may include one or
more wireless and/or wire lined communication systems; one
or more private intranet systems and/or public internet sys-
tems; and/or one or more local area networks (LAN) and/or
wide area networks (WAN).

The DSN memory 22 includes a plurality of distributed
storage (DS) units 36 for storing data of the system. Each of
the DS units 36 includes a processing module and memory
and may be located at a geographically different site than the
other DS units (e.g., one in Chicago, one in Milwaukee, etc.).
The processing module may be a single processing device or
a plurality of processing devices. Such a processing device
may be a microprocessor, micro-controller, digital signal pro-
cessor, microcomputer, central processing unit, field pro-
grammable gate array, programmable logic device, state
machine, logic circuitry, analog circuitry, digital circuitry,
and/or any device that manipulates signals (analog and/or
digital) based on hard coding of the circuitry and/or opera-
tional instructions. The processing module may have an asso-
ciated memory and/or memory element, which may be a
single memory device, a plurality of memory devices, and/or
embedded circuitry of the processing module. Such a

10

15

20

25

40

45

50

55

4

memory device may be a read-only memory, random access
memory, volatile memory, non-volatile memory, static
memory, dynamic memory, flash memory, cache memory,
and/or any device that stores digital information. Note that if
the processing module includes more than one processing
device, the processing devices may be centrally located (e.g.,
directly coupled together via a wired and/or wireless bus
structure) or may be distributedly located (e.g., cloud com-
puting via indirect coupling via a local area network and/or a
wide area network). Further note that when the processing
module implements one or more of its functions via a state
machine, analog circuitry, digital circuitry, and/or logic cir-
cuitry, the memory and/or memory element storing the cor-
responding operational instructions may be embedded
within, or external to, the circuitry comprising the state
machine, analog circuitry, digital circuitry, and/or logic cir-
cuitry. Still further note that, the memory element stores, and
the processing module executes, hard coded and/or opera-
tional instructions corresponding to at least some of the steps
and/or functions illustrated in FIGS. 1-13.

Each ofthe user devices 12-14, the DS processing unit 16,
the DS managing unit 18, and the storage integrity processing
unit 20 may be a portable computing device (e.g., a social
networking device, a gaming device, a cell phone, a smart
phone, a personal digital assistant, a digital music player, a
digital video player, a laptop computer, a handheld computer,
avideo game controller, and/or any other portable device that
includes a computing core) and/or a fixed computing device
(e.g., a personal computer, a computer server, a cable set-top
box, a satellite receiver, a television set, a printer, a fax
machine, home entertainment equipment, a video game con-
sole, and/or any type of home or office computing equip-
ment). Such a portable or fixed computing device includes a
computing core 26 and one or more interfaces 30, 32, and/or
33. An embodiment of the computing core 26 will be
described with reference to FIG. 2.

With respect to the interfaces, each of the interfaces 30, 32,
and 33 includes software and/or hardware to support one or
more communication links via the network 24 and/or directly.
For example, interfaces 30 support a communication link
(wired, wireless, direct, via a LAN, via the network 24, etc.)
between the first type of user device 12 and the DS processing
unit 16. As another example, DSN interface 32 supports a
plurality of communication links via the network 24 between
the DSN memory 22 and the DS processing unit 16, the first
type of user device 12, and/or the storage integrity processing
unit 20. As yet another example, interface 33 supports a
communication link between the DS managing unit 18 and
any one of the other devices and/or units 12, 14, 16, 20, and/or
22 via the network 24.

In general and with respect to data storage, the system 10
supports three primary functions: distributed network data
storage management, distributed data storage and retrieval,
and data storage integrity verification. In accordance with
these three primary functions, data can be distributedly stored
in a plurality of physically different locations and subse-
quently retrieved in a reliable and secure manner regardless of
failures of individual storage devices, failures of network
equipment, the duration of storage, the amount of data being
stored, attempts at hacking the data, etc.

The DS managing unit 18 performs distributed network
data storage management functions, which include establish-
ing distributed data storage parameters, performing network
operations, performing network administration, and/or per-
forming network maintenance. The DS managing unit 18
establishes the distributed data storage parameters (e.g., allo-
cation of virtual DSN memory space, distributed storage

US 9,110,819 B2

5

parameters, security parameters, billing information, user
profile information, etc.) for one or more of the user devices
12-14 (e.g., established for individual devices, established for
a user group of devices, established for public access by the
user devices, etc.). For example, the DS managing unit 18
coordinates the creation of a vault (e.g., a virtual memory
block) within the DSN memory 22 for a user device (for a
group of devices, or for public access). The DS managing unit
18 also determines the distributed data storage parameters for
the vault. In particular, the DS managing unit 18 determines a
number of slices (e.g., the number that a data segment of a
data file and/or data block is partitioned into for distributed
storage) and a read threshold value (e.g., the minimum num-
ber of slices required to reconstruct the data segment).

As another example, the DS managing module 18 creates
and stores, locally or within the DSN memory 22, user profile
information. The user profile information includes one or
more of authentication information, permissions, and/or the
security parameters. The security parameters may include
one or more of encryption/decryption scheme, one or more
encryption keys, key generation scheme, and data encoding/
decoding scheme.

As yet another example, the DS managing unit 18 creates
billing information for a particular user, user group, vault
access, public vault access, etc. For instance, the DS manag-
ing unit 18 tracks the number of times a user accesses a private
vault and/or public vaults, which can be used to generate a
per-access bill. In another instance, the DS managing unit 18
tracks the amount of data stored and/or retrieved by a user
device and/or a user group, which can be used to generate a
per-data-amount bill.

The DS managing unit 18 also performs network opera-
tions, network administration, and/or network maintenance.
As at least part of performing the network operations and/or
administration, the DS managing unit 18 monitors perfor-
mance of the devices and/or units of the system 10 for poten-
tial failures, determines the devices” and/or units’ activation
status, determines the devices’ and/or units’ loading, and any
other system level operation that affects the performance
level of the system 10. For example, the DS managing unit 18
receives and aggregates network management alarms, alerts,
errors, status information, performance information, and
messages from the devices 12-14 and/or the units 16, 20, 22.
For example, the DS managing unit 18 receives a simple
network management protocol (SNMP) message regarding
the status of the DS processing unit 16.

The DS managing unit 18 performs the network mainte-
nance by identifying equipment within the system 10 that
needs replacing, upgrading, repairing, and/or expanding. For
example, the DS managing unit 18 determines that the DSN
memory 22 needs more DS units 36 or that one or more of the
DS units 36 needs updating.

The second primary function (i.e., distributed data storage
and retrieval) begins and ends with a user device 12-14. For
instance, if a second type of user device 14 has a data file 38
and/or data block 40 to store in the DSN memory 22, it sends
the data file 38 and/or data block 40 to the DS processing unit
16 via its interface 30. As will be described in greater detail
with reference to FIG. 2, the interface 30 functions to mimic
a conventional operating system (OS) file system interface
(e.g., network file system (NFS), flash file system (FFS), disk
file system (DFS), file transfer protocol (FTP), web-based
distributed authoring and versioning (WebDAV), etc.) and/or
a block memory interface (e.g., small computer system inter-
face (SCSI), internet small computer system interface

10

15

20

25

30

35

40

45

50

55

60

65

6
(iSCSI), etc.). In addition, the interface 30 may attach a user
identification code (ID) to the data file 38 and/or data block
40.

The DS processing unit 16 receives the data file 38 and/or
data block 40 via its interface 30 and performs a distributed
storage (DS) process 34 thereon (e.g., an error coding dis-
persal storage function). The DS processing 34 begins by
partitioning the data file 38 and/or data block 40 into one or
more data segments, which is represented as Y data segments.
For example, the DS processing 34 may partition the data file
38 and/or data block 40 into a fixed byte size segment (e.g., 2"
to 2” bytes, where n=>2) or a variable byte size (e.g., change
byte size from segment to segment, or from groups of seg-
ments to groups of segments, etc.).

For eachoftheY data segments, the DS processing 34 error
encodes (e.g., forward error correction (FEC), information
dispersal algorithm, or error correction coding) and slices (or
slices then error encodes) the data segment into a plurality of
error coded (EC) data slices 42-48, which is represented as X
slices per data segment. The number of slices (X) per seg-
ment, which corresponds to a number of pillars n, is set in
accordance with the distributed data storage parameters and
the error coding scheme. For example, if a Reed-Solomon (or
other FEC scheme) is used in an n/k system, then a data
segment is divided into n slices, where k number of slices is
needed to reconstruct the original data (i.e., k is the thresh-
old). As a few specific examples, the n/k factor may be 5/3;
6/4; 8/6; 8/5; 16/10.

For each EC slice 42-48, the DS processing unit 16 creates
a unique slice name and appends it to the corresponding EC
slice 42-48. The slice name includes universal DSN memory
addressing routing information (e.g., virtual memory
addresses in the DSN memory 22) and user-specific informa-
tion (e.g., user ID, file name, data block identifier, etc.).

The DS processing unit 16 transmits the plurality of EC
slices 42-48 to a plurality of DS units 36 of the DSN memory
22 via the DSN interface 32 and the network 24. The DSN
interface 32 formats each of the slices for transmission via the
network 24. For example, the DSN interface 32 may utilize an
internet protocol (e.g., TCP/IP, etc.) to packetize the EC slices
42-48 for transmission via the network 24.

The number of DS units 36 receiving the EC slices 42-48 is
dependent on the distributed data storage parameters estab-
lished by the DS managing unit 18. For example, the DS
managing unit 18 may indicate that each slice is to be stored
in a different DS unit 36. As another example, the DS man-
aging unit 18 may indicate that like slice numbers of different
data segments are to be stored in the same DS unit 36. For
example, the first slice of each of the data segments is to be
stored in a first DS unit 36, the second slice of each of the data
segments is to be stored in a second DS unit 36, etc. In this
manner, the data is encoded and distributedly stored at physi-
cally diverse locations to improve data storage integrity and
security. Further examples of encoding the data segments will
be provided with reference to one or more of FIGS. 2-13.

Each DS unit 36 that receives an EC slice 42-48 for storage
translates the virtual DSN memory address of the slice into a
local physical address for storage. Accordingly, each DS unit
36 maintains a virtual to physical memory mapping to assist
in the storage and retrieval of data.

The first type of user device 12 performs a similar function
to store data in the DSN memory 22 with the exception that it
includes the DS processing. As such, the device 12 encodes
and slices the data file and/or data block it has to store. The
device then transmits the slices 11 to the DSN memory via its
DSN interface 32 and the network 24.

US 9,110,819 B2

7

For a second type of user device 14 to retrieve a data file or
data block from memory, it issues a read command via its
interface 30 to the DS processing unit 16. The DS processing
unit 16 performs the DS processing 34 to identify the DS units
36 storing the slices of the data file and/or data block based on
the read command. The DS processing unit 16 may also
communicate with the DS managing unit 18 to verify that the
user device 14 is authorized to access the requested data.

Assuming that the user device is authorized to access the
requested data, the DS processing unit 16 issues slice read
commands to at least a threshold number of the DS units 36
storing the requested data (e.g., to at least 10 DS units for a
16/10error coding scheme). Each of the DS units 36 receiving
the slice read command, verifies the command, accesses its
virtual to physical memory mapping, retrieves the requested
slice, or slices, and transmits it to the DS processing unit 16.

Once the DS processing unit 16 has received a read thresh-
old number of slices for a data segment, it performs an error
decoding function and de-slicing to reconstruct the data seg-
ment. When Y number of data segments has been recon-
structed, the DS processing unit 16 provides the data file 38
and/or data block 40 to the user device 14. Note that the first
type of user device 12 performs a similar process to retrieve a
data file and/or data block.

The storage integrity processing unit 20 performs the third
primary function of data storage integrity verification. In
general, the storage integrity processing unit 20 periodically
retrieves slices 45, and/or slice names, of a data file or data
block of a user device to verify that one or more slices have
not been corrupted or lost (e.g., the DS unit failed). The
retrieval process mimics the read process previously
described.

If the storage integrity processing unit 20 determines that
one or more slices is corrupted or lost, it rebuilds the cor-
rupted or lost slice(s) in accordance with the error coding
scheme. The storage integrity processing unit 20 stores the
rebuild slice, or slices, in the appropriate DS unit(s) 36 in a
manner that mimics the write process previously described.

FIG. 2 is a schematic block diagram of an embodiment of
a computing core 26 that includes a processing module 50, a
memory controller 52, main memory 54, a video graphics
processing unit 55, an input/output (IO) controller 56, a
peripheral component interconnect (PCI) interface 58, an 10
interface 60, at least one 10 device interface module 62, a read
only memory (ROM) basic input output system (BIOS) 64,
and one or more memory interface modules. The memory
interface module(s) includes one or more of a universal serial
bus (USB) interface module 66, a host bus adapter (HBA)
interface module 68, a network interface module 70, a flash
interface module 72, a hard drive interface module 74, and a
DSN interface module 76. Note the DSN interface module 76
and/or the network interface module 70 may function as the
interface 30 of the user device 14 of FIG. 1. Further note that
the 10O device interface module 62 and/or the memory inter-
face modules may be collectively or individually referred to
as 10 ports.

The processing module 50 may be a single processing
device or a plurality of processing devices. Such a processing
device may be a microprocessor, micro-controller, digital
signal processor, microcomputer, central processing unit,
field programmable gate array, programmable logic device,
state machine, logic circuitry, analog circuitry, digital cir-
cuitry, and/or any device that manipulates signals (analog
and/or digital) based on hard coding of the circuitry and/or
operational instructions. The processing module 50 may have
anassociated memory and/or memory element, which may be
a single memory device, a plurality of memory devices, and/

35

40

45

50

8

or embedded circuitry of the processing module 50. Such a
memory device may be a read-only memory, random access
memory, volatile memory, non-volatile memory, static
memory, dynamic memory, flash memory, cache memory,
and/or any device that stores digital information. Note that if
the processing module 50 includes more than one processing
device, the processing devices may be centrally located (e.g.,
directly coupled together via a wired and/or wireless bus
structure) or may be distributedly located (e.g., cloud com-
puting via indirect coupling via a local area network and/or a
wide area network). Further note that when the processing
module 50 implements one or more of'its functions via a state
machine, analog circuitry, digital circuitry, and/or logic cir-
cuitry, the memory and/or memory element storing the cor-
responding operational instructions may be embedded
within, or external to, the circuitry comprising the state
machine, analog circuitry, digital circuitry, and/or logic cir-
cuitry. Still further note that, the memory element stores, and
the processing module 50 executes, hard coded and/or opera-
tional instructions corresponding to at least some of the steps
and/or functions illustrated in FIGS. 1-13.

FIG. 3 is a schematic block diagram of an embodiment of
adispersed storage (DS) processing module 34 of user device
12 and/or of the DS processing unit 16. The DS processing
module 34 includes a gateway module 78, an access module
80, a grid module 82, and a storage module 84. The DS
processing module 34 may also include an interface 30 and
the DSnet interface 32 or the interfaces 68 and/or 70 may be
part of user device 12 or of the DS processing unit 16. The DS
processing module 34 may further include a bypass/feedback
path between the storage module 84 to the gateway module
78. Note that the modules 78-84 of the DS processing module
34 may be in a single unit or distributed across multiple units.

In an example of storing data, the gateway module 78
receives an incoming data object that includes a user ID field
86, an object name field 88, and the data object field 40 and
may also receive corresponding information that includes a
process identifier (e.g., an internal process/application ID),
metadata, a file system directory, a block number, a transac-
tion message, a user device identity (ID), a data object iden-
tifier, a source name, and/or user information. The gateway
module 78 authenticates the user associated with the data
object by veritying the user ID 86 with the DS managing unit
18 and/or another authenticating unit.

When the user is authenticated, the gateway module 78
obtains user information from the management unit 18, the
user device, and/or the other authenticating unit. The user
information includes a vault identifier, operational param-
eters, and user attributes (e.g., user data, billing information,
etc.). A vault identifier identifies a vault, which is a virtual
memory space that maps to a set of DS storage units 36. For
example, vault 1 (i.e., user 1’s DSN memory space) includes
eight DS storage units (X=8 wide) and vault 2 (i.e., user 2’s
DSN memory space) includes sixteen DS storage units (X=16
wide). The operational parameters may include an error cod-
ing algorithm, the width n (number of pillars X or slices per
segment for this vault), a read threshold T, a write threshold,
an encryption algorithm, a slicing parameter, a compression
algorithm, an integrity check method, caching settings, par-
allelism settings, and/or other parameters that may be used to
access the DSN memory layer.

The gateway module 78 uses the user information to assign
a source name 35 to the data. For instance, the gateway
module 78 determines the source name 35 of the data object
40 based on the vault identifier and the data object. For
example, the source name may contain a file identifier (ID), a
vault generation number, a reserved field, and a vault identi-

US 9,110,819 B2

9

fier (ID). As another example, the gateway module 78 may
generate the file ID based on a hash function of the data object
40. Note that the gateway module 78 may also perform mes-
sage conversion, protocol conversion, electrical conversion,
optical conversion, access control, user identification, user
information retrieval, traffic monitoring, statistics generation,
configuration, management, and/or source name determina-
tion.

The access module 80 receives the data object 40 and
creates a series of data segments 1 through 'Y 90-92 in accor-
dance with a data storage protocol (e.g., file storage system, a
block storage system, and/or an aggregated block storage
system). The number of segments Y may be chosen or ran-
domly assigned based on a selected segment size and the size
of the data object. For example, if the number of segments is
chosen to be a fixed number, then the size of the segments
varies as a function of the size of the data object. For instance,
if the data object is an image file 4,194,304 eight bit bytes
(e.g., 33,554,432 bits) and the number of segments Y=131,
072, then each segment is 256 bits or 32 bytes. As another
example, if segment size is fixed, then the number of seg-
ments Y varies based on the size of data object. For instance,
if the data object is an image file of 4,194,304 bytes and the
fixed size of each segment is 4,096 bytes, then the number of
segments Y=1,024. Note that each segment is associated with
the same source name.

The grid module 82 receives the data segments and may
manipulate (e.g., compression, encryption, cyclic redun-
dancy check (CRC), etc.) each of the data segments before
performing an error coding function of the error coding dis-
persal storage function to produce a pre-manipulated data
segment. After manipulating a data segment, if applicable, the
grid module 82 error encodes (e.g., Reed-Solomon, Convo-
Iution encoding, Trellis encoding, etc.) the data segment or
manipulated data segment into X error coded data slices
42-44.

The value X, or the number of pillars (e.g., X=16), is
chosen as a parameter of the error coding dispersal storage
function. Other parameters of the error coding dispersal func-
tion include a read threshold T, a write threshold W, etc. The
read threshold (e.g., T=10, when X=16) corresponds to the
minimum number of error-free error coded data slices
required to reconstruct the data segment. In other words, the
DS processing module 34 can compensate for X-T (e.g.,
16-10=6) missing error coded data slices per data segment.
The write threshold W corresponds to a minimum number of
DS storage units that acknowledge proper storage of their
respective data slices before the DS processing module indi-
cates proper storage of the encoded data segment. Note that
the write threshold is greater than or equal to the read thresh-
old for a given number of pillars (X).

For each data slice of a data segment, the grid module 82
generates a unique slice name 37 and attaches it thereto. The
slice name 37 includes a universal routing information field
and a vault specific field and may be 48 bytes (e.g., 24 bytes
for each of the universal routing information field and the
vault specific field). As illustrated, the universal routing infor-
mation field includes a slice index, a vault ID, a vault genera-
tion, and a reserved field. The slice index is based on the pillar
number and the vault ID and, as such, is unique for each pillar
(e.g., slices of the same pillar for the same vault for any
segment will share the same slice index). The vault specific
field includes a data name, which includes a file ID and a
segment number (e.g., a sequential numbering of data seg-
ments 1-Y of a simple data object or a data block number).

Prior to outputting the error coded data slices of a data
segment, the grid module may perform post-slice manipula-

25

35

40

45

50

10

tion on the slices. If enabled, the manipulation includes slice
level compression, encryption, CRC, addressing, tagging,
and/or other manipulation to improve the effectiveness of the
computing system.

When the error coded data slices of a data segment are
ready to be outputted, the grid module 82 determines which of
the DS storage units 36 will store the EC data slices based on
a dispersed storage memory mapping associated with the
user’s vault and/or DS storage unit attributes. The DS storage
unit attributes may include availability, self-selection, perfor-
mance history, link speed, link latency, ownership, available
DSN memory, domain, cost, a prioritization scheme, a cen-
tralized selection message from another source, a lookup
table, data ownership, and/or any other factor to optimize the
operation of the computing system. Note that the number of
DS storage units 36 is equal to or greater than the number of
pillars (e.g., X) so that no more than one error coded data slice
of'the same data segment is stored on the same DS storage unit
36. Further note that EC data slices of the same pillar number
but of different segments (e.g., EC data slice 1 of data segment
1 and EC data slice 1 of data segment 2) may be stored on the
same or different DS storage units 36.

The storage module 84 performs an integrity check on the
outbound encoded data slices and, when successtul, identifies
aplurality of DS storage units based on information provided
by the grid module 82. The storage module 84 then outputs
the encoded data slices 1 through X of each segment 1
through'Y to the DS storage units 36. Each of the DS storage
units 36 stores its EC data slice(s) and maintains a local
virtual DSN address to physical location table to convert the
virtual DSN address of the EC data slice(s) into physical
storage addresses.

In an example of a read operation, the user device 12 and/or
14 sends a read request to the DS processing unit 16, which
authenticates the request. When the request is authentic, the
DS processing unit 16 sends a read message to each of the DS
storage units 36 storing slices of the data object being read.
The slices are received via the DSnet interface 32 and pro-
cessed by the storage module 84, which performs a parity
check and provides the slices to the grid module 82 when the
parity check was successtul. The grid module 82 decodes the
slices in accordance with the error coding dispersal storage
function to reconstruct the data segment. The access module
80 reconstructs the data object from the data segments and the
gateway module 78 formats the data object for transmission
to the user device.

FIG. 4 is a schematic block diagram of an embodiment of
a grid module 82 that includes a control unit 73, a pre-slice
manipulator 75, an encoder 77, a slicer 79, a post-slice
manipulator 81, a pre-slice de-manipulator 83, a decoder 85,
a de-slicer 87, and/or a post-slice de-manipulator 89. Note
that the control unit 73 may be partially or completely exter-
nal to the grid module 82. For example, the control unit 73
may be part of the computing core at a remote location, part of
auser device, part of the DS managing unit 18, or distributed
amongst one or more DS storage units.

In an example of write operation, the pre-slice manipulator
75 receives a data segment 90-92 and a write instruction from
anauthorized user device. The pre-slice manipulator 75 deter-
mines if pre-manipulation of the data segment 90-92 is
required and, if so, what type. The pre-slice manipulator 75
may make the determination independently or based on
instructions from the control unit 73, where the determination
is based on a computing system-wide predetermination, a
table lookup, vault parameters associated with the user iden-

US 9,110,819 B2

11

tification, the type of data, security requirements, available
DSN memory, performance requirements, and/or other meta-
data.

Once a positive determination is made, the pre-slice
manipulator 75 manipulates the data segment 90-92 in accor-
dance with the type of manipulation. For example, the type of
manipulation may be compression (e.g., Lempel-Ziv-Welch,
Huffman, Golomb, fractal, wavelet, etc.), signatures (e.g.,
Digital Signature Algorithm (DSA), Elliptic Curve DSA,
Secure Hash Algorithm, etc.), watermarking, tagging,
encryption (e.g., Data Encryption Standard, Advanced
Encryption Standard, etc.), adding metadata (e.g., time/date
stamping, user information, file type, etc.), cyclic redundancy
check (e.g., CRC32), and/or other data manipulations to pro-
duce the pre-manipulated data segment.

The encoder 77 encodes the pre-manipulated data segment
92 using a forward error correction (FEC) encoder (and/or
other type of erasure coding and/or error coding) to produce
an encoded data segment 94. The encoder 77 determines
which forward error correction algorithm to use based on a
predetermination associated with the user’s vault, a time
based algorithm, user direction, DS managing unit direction,
control unit direction, as a function of the data type, as a
function of the data segment 92 metadata, and/or any other
factor to determine algorithm type. The forward error correc-
tion algorithm may be Golay, Multidimensional parity, Reed-
Solomon, Hamming, Bose Ray Chauduri Hocquenghem
(BCH), Cauchy-Reed-Solomon, or any other FEC encoder.
Note that the encoder 77 may use a different encoding algo-
rithm for each data segment 92, the same encoding algorithm
for the data segments 92 of a data object, or a combination
thereof.

The encoded data segment 94 is of greater size than the data
segment 92 by the overhead rate of the encoding algorithm by
a factor of X/T, where X is the width or number of slices, and
T is the read threshold. In this regard, the corresponding
decoding process can accommodate at most X-T missing EC
data slices and still recreate the data segment 92. For example,
if X=16 and T=10, then the data segment 92 will be recover-
able as long as 10 or more EC data slices per segment are not
corrupted.

The slicer 79 transforms the encoded data segment 94 into
EC data slices in accordance with the slicing parameter from
the vault for this user and/or data segment 92. For example, if
the slicing parameter is X=16, then the slicer 79 slices each
encoded data segment 94 into 16 encoded slices.

The post-slice manipulator 81 performs, if enabled, post-
manipulation on the encoded slices to produce the EC data
slices. If enabled, the post-slice manipulator 81 determines
the type of post-manipulation, which may be based on a
computing system-wide predetermination, parameters in the
vault for this user, a table lookup, the user identification, the
type of data, security requirements, available DSN memory,
performance requirements, control unit directed, and/or other
metadata. Note that the type of post-slice manipulation may
include slice level compression, signatures, encryption, CRC,
addressing, watermarking, tagging, adding metadata, and/or
other manipulation to improve the effectiveness of the com-
puting system.

In an example of a read operation, the post-slice de-ma-
nipulator 89 receives at least a read threshold number of EC
data slices and performs the inverse function of the post-slice
manipulator 81 to produce a plurality of encoded slices. The
de-slicer 87 de-slices the encoded slices to produce an
encoded data segment 94. The decoder 85 performs the
inverse function of the encoder 77 to recapture the data seg-

10

15

20

25

30

35

40

45

50

55

60

65

12

ment 90-92. The pre-slice de-manipulator 83 performs the
inverse function of the pre-slice manipulator 75 to recapture
the data segment 90-92.

FIG. 5 is a diagram of an example of slicing an encoded
data segment 94 by the slicer 79. In this example, the encoded
data segment 94 includes thirty-two bits, but may include
more or less bits. The slicer 79 disperses the bits of the
encoded data segment 94 across the EC data slices in a pattern
as shown. As such, each EC data slice does not include con-
secutive bits of the data segment 94 reducing the impact of
consecutive bit failures on data recovery. For example, if EC
data slice 2 (which includes bits 1, 5, 9, 13, 17, 25, and 29) is
unavailable (e.g., lost, inaccessible, or corrupted), the data
segment can be reconstructed from the other EC data slices
(e.g., 1, 3 and 4 for a read threshold of 3 and a width of 4).

FIG. 6 is a flowchart illustrating an example of storing data
as encoded data slices. The method begins with step 102 were
a processing module receives a store data object message
from one or more of a user device, a storage integrity pro-
cessing unit, a dispersed storage (DS) processing unit, a DS
managing unit, and a DS unit. The store data object message
includes one or more of a data object name, a data object size,
a data type, a data object, an input metadata, a priority indi-
cator, a security indicator, a performance indicator, a user
device identifier (ID), and input requirements.

The method continues at step 104 where the processing
module determines metadata regarding data of the data
object. Such metadata summarizes attributes of the data
object including identification of priority data, identification
of non-priority data, a data type, a data size indicator, and
storage requirements. Such a determination may be based on
one or more of a vault lookup, a command, a message, a
predetermination, a data object analysis, the data object
name, the data object size, a data type, the data object, the
input metadata, the priority indicator, the security indicator,
the performance indicator, the input requirements, and
retrieval of a metadata file that is linked to a data object
indicating previous metadata.

The method continues at step 106 where the processing
module determines requirements associated with storing the
data object including one or more of expected access fre-
quency, priority, security, performance, access latency, and
reliability. Such a determination may be based on one or more
of the metadata, a metadata analysis, a vault lookup, a com-
mand, a message, a predetermination, a data object analysis,
the data object name, the data object size, a data type, the data
object, the input metadata, the priority indicator, the security
indicator, the performance indicator, and the input require-
ments. For example, the processing module determines that
the access latency requirement is slower than average and the
reliability requirement is higher than average when the per-
formance indicator indicates that more reliability is favored
over faster access latency.

The method continues at step 108 where the processing
module determines DS unit performance history with regards
to DS units of a dispersed storage network (DSN) memory.
Such DS unit performance history includes one or more of
history of reliability, availability, access latency, bandwidth
utilization, security performance, and cost. Such a determi-
nation may be based on one or more of a vault lookup, a
command, a message, a predetermination, and DS unit query.
The processing module determines the DS unit performance
history for a plurality of DS units where the plurality of DS
units are candidates to be included in a DS unit storage set.

The method continues at step 110 where the processing
module determines DS unit estimated performance. Such DS
unit estimated performance includes one or more of a perfor-

US 9,110,819 B2

13

mance based indication regarding storage of a data segment
as a set of encoded data slices, an estimation of reliability,
estimated availability, estimated access latency, estimated
bandwidth utilization, estimated security performance, esti-
mated cost, and estimated availability. Such a determination
may be based on one or more of a vault lookup, a command,
a message, a predetermination, a DS unit query, the DS unit
performance history, and an estimation algorithm. For
example, the processing module determines that DS unit esti-
mated access latency performance is lower than average when
the DS unit access latency performance history was lower
than average. As another example, the processing module
determines the DS unit estimated reliability to be lower than
average when the DS unit reliability history was lower than
average. As yet another example, the processing module
determines a performance based indication regarding storage
of'a data segment as a set of encoded data slices as the DS unit
estimated performance.

The method continues at step 112 where processing mod-
ule determines error coding dispersal storage function param-
eters (e.g., operational parameters). Such parameters may
include one or more of a pillar width n, a read threshold, a
decode threshold k, a write threshold, an encode/decode algo-
rithm, and an encryption method. Such a determination may
be based on one or more of a vault lookup, a command, a
message, a predetermination, a DS unit query, the DS unit
performance history, the DS unit estimated performance, the
requirements, the metadata, and information received in the
store data object message. For example, the processing mod-
ule determines to utilize a relatively large number of DS units
in the storage set (e.g., a higher pillar width n) and a lower
decode threshold k when the processing module determines
that the DS units are less reliable than average and the require-
ments include higher than average reliability. As another
example, the processing module determines to utilize a rela-
tively small number of DS units in the DS unit storage set and
a higher decode threshold k when the processing module
determines that the DS units are more reliable than average
and the requirements include greater efficiency of storage.

The method continues at step 114 where the processing
module determines the DS unit storage set based on one or
more of an encoded data slice, an associated slice name, a
vault lookup, identification of a slice name range to be rebuilt,
a second DS unit identifier associated with the DS unit affili-
ated with the associated slice name, a virtual dispersed stor-
age network (DSN) address to physical location table lookup,
a command, a message, a predetermination, a DS unit query,
the error coding dispersal storage function parameters, the DS
unit performance history, the DS unit estimated performance,
the requirements, the metadata, and the information received
in the store data object message. Note that the processing
module may re-determine the error coding dispersal storage
function parameters when DS units that meet the require-
ments are not available. Alternatively, the processing module
may determine the DS unit storage set prior to determining
the error coding dispersal storage function parameters.

The method continues at step 116 where the processing
module dispersed storage error encodes the data to produce a
plurality of sets of encoded data slices in accordance with the
error coding dispersal storage function parameters. Next, the
processing module appends one or more of the metadata, the
requirements, the DS unit performance history, the DS unit
estimated performance, a source name, a slice name, and the
error coding dispersal storage function parameters to one or
more of data segments created from the data object prior to
encoding and slicing the data segment to enable subsequent
re-creation of the data object. Alternatively, the processing

5

10

15

20

25

30

35

40

45

55

60

65

14

module creates a metadata file that includes one or more of the
metadata, the requirements, the DS unit performance history,
the DS unit estimated performance, the source name, the slice
name, and the error coding dispersal storage function param-
eters. Next, the processing module stores the metadata file the
DSN memory as encoded metadata slices to enable subse-
quent retrieval and re-creation of the data object. The method
at step 118 continues where the processing module sends the
plurality of sets of encoded data slices to DS units of the DS
unit storage set for storage therein.

FIG. 7 is a flowchart illustrating an example of re-storing
data as encoded data slices, which includes some similar steps
to FIG. 6. The method begins with step 120 where a process-
ing module determines a dispersed storage (DS) unit storage
set based on one or more of a data object name, a user
identifier (ID), where a sequence left off last time, a directory
entry, a storage location table lookup, a command, a message,
a predetermination, and a query. As a specific example, the
processing module determines a DS unit storage set 457
based on the storage location table lookup corresponding to a
data object foo.txt, wherein foo.txt is a next entry of a direc-
tory entry.

The method continues with steps 104-110 of FIG. 6 and
then continues with step 122 where the processing module
determines whether to change the DS unit storage set and/or
to change error coding dispersal storage function parameters
(e.g., operational parameters) based on a comparison of the
DS unit estimated performance to the requirements. For
example, the processing module compares a performance
based indication (e.g., the DS unit estimated performance
based on the DS unit performance history) with a perfor-
mance threshold of the requirements. Note that the DS unit
estimated performance may have changed since encoded data
slices were originally stored to the DS unit storage set. Fur-
ther note that the requirements may have changed since the
slices were originally stored to the DS unit storage set. The
processing module determines to change the DS unit storage
set and/or the error coding dispersal storage function param-
eters when the processing module determines that the com-
parison of the DS unit estimated performance to the require-
ments is unfavorable.

For example, the processing module determines to change
the DS unit storage set when a DS unit estimated reliability
level is below a required reliability level. As another example,
the processing module determines to change the error coding
dispersal storage function parameters when a DS unit esti-
mated access latency time is above a required access latency.
As yet another example, the processing module determines to
change the DS unit storage set and the error coding dispersal
storage function parameters when the DS unit estimated reli-
ability level is below the required reliability level and the DS
unit estimated access latency time is above the required
access latency.

The method repeats back to step 120 when the processing
module determines not to change the DS unit storage set
and/or the error coding dispersal storage function parameters
(e.g., the performance based indication compares favorably
with the performance threshold). The method continues to
step 112 of FIG. 6 when the processing module determines to
change the DS unit storage set and/or the error coding dis-
persal storage function parameters (e.g., the performance
based indication compares unfavorably with the performance
threshold).

The method continues at step 124 where the processing
module retrieves a set of encoded data slices from the DS unit
storage set by sending a read encoded data slice message to at
least a read threshold number of DS units of the DS unit

US 9,110,819 B2

15

storage set and receiving at least a decode threshold number
of encoded data slices of the set of encoded data slices. The
method continues at step 126 where the processing module
dispersed storage error decodes the at least the decode thresh-
old number of encoded data slices of the set of encoded data
slices in accordance with the error coding dispersal storage
function parameters to reproduce a data segment as a repro-
duced data segment.

The method continues at step 128 where the processing
module adjusts the error coding dispersal storage function
parameters based on the unfavorable comparison of the per-
formance based indication with the performance threshold to
produce performance adjusted error coding dispersal storage
function parameters. Such adjusting includes one or more of
determining desired error coding dispersal storage function
parameters based on the performance threshold and the per-
formance based indication, determining a difference between
desired error coding dispersal storage function parameters
and the error coding dispersal storage function parameters to
produce a parameters difference, and adjusting the error cod-
ing dispersal storage function parameters based on the param-
eters difference, wherein determining at least one of the
desired error coding dispersal storage function parameters
and the parameters difference is based on at least one of a set
of DS units, the error coding dispersal storage function
parameters, a vault lookup, a command, a message, a prede-
termination, a DS unit query, a historical DS unit performance
level, an estimated DS unit performance level, storage
requirements, security requirements, and metadata.

For example, the processing module adjusts the error cod-
ing dispersal storage function parameters by increasing a
difference between a decode threshold and a pillar width and
adjusting an encoding matrix in accordance with the increas-
ing of the difference when the performance based indication
compares unfavorably with the performance threshold as a
result of under-performance. As another example, the pro-
cessing module adjusts the error coding dispersal storage
function parameters by decreasing a difference between a
decode threshold and a pillar width and adjusting an encoding
matrix in accordance with the increasing of the difference
when the performance based indication compares unfavor-
ably with the performance threshold as a result of over-per-
formance. As yet another example, the processing module
adjusts the error coding dispersal storage function parameters
to include a different encryption algorithm when the security
requirements have changed. Next, the processing module
saves the performance adjusted error coding dispersal storage
function parameters by storing the performance adjusted
error coding dispersal storage function parameters in a local
memory and/or as encoded parameters slices in a dispersed
storage network (DSN) memory.

The method continues at step 130 where the processing
module determines a new DS unit storage set based on one or
more of a vault lookup, a command, a message, a predeter-
mination, a DS unit query, the error coding dispersal storage
function parameters, the performance adjusted error coding
dispersal storage function parameters, the DS unit storage set,
the DS unit performance history, the DS unit estimated per-
formance, the requirements, the metadata, and information
received in the store data object message. Next, processing
module saves the new DS unit storage set selection by storing
the new DS unit storage set selection in a local memory and/or
as encoded DS unit selection slices in the DSN memory.

The method continues at step 132 where the processing
module encodes the reproduced data segment in accordance
with the performance adjusted error coding dispersal storage
function parameters to produce a second set of encoded data

10

15

20

25

30

35

40

45

50

55

60

65

16

slices. Next, the processing module selects a storage set of
encoded data slices from the set of encoded data slices and the
second set of encoded data slices based on a difference
between the performance adjusted error coding dispersal
storage function parameters and the error coding dispersal
storage function parameters. Such selecting of the storage set
of'encoded data slices includes at least one of selecting the set
of'encoded data slices and selecting at least one encoded data
slice of the second set of encoded data slices. Next, process-
ing module updates a storage location table to associate a
corresponding slice name of a set of slice names with a
corresponding encoded data slice of the storage set of
encoded data slices to facilitate subsequent retrieval.

Alternatively, retrieval may be accomplished by a lookup
of original locations of original encoded data slices and
extend address ranges of the original locations to provide
locations of newer encoded data slices associated with the
original encoded data slices. Note that the first decode thresh-
old number k of encoded data slices of the second set of
encoded data slices specify the reproduced data segment in its
original format when an encoding matrix includes a unity
sub-matrix. Further note that remaining n-k encoded data
slices of the second set of encoded data slices specify parity
information that may be utilized in subsequent retrieval pro-
cess to correct for errors when the first k encoded data slices
are not successfully retrieved. Further note that the first set of
encoded data slices are included in the second set of encoded
data slices when the second set of encoded data slices are
produced by encoding the reproduced data segment with an
encoding matrix that is identical to the encoding matrix uti-
lized to produce the first set of encoded data slices with the
exception that one or more rows are added which result in
generation of further parity slices. For example, the process-
ing module produces one new slice (e.g., slice number 17) in
the second set of encoded data slices when the error coding
dispersal storage function parameters include a pillar width of
16, and a decode threshold of 10, and the performance
adjusted error coding dispersal storage function parameters
include a pillar width of 17 and a decode threshold of 10. The
method continues at step 134 where the processing module
outputs each of the encoded data slices of the storage set of
encoded data slices that is selected from the second set of
encoded data slices to the new DS unit storage set of the DSN
memory for storage therein.

FIG. 8A is a diagram illustrating data segmentation of data
that includes a data object 136, a segment set 138, a segment
set R 140, and a segment set P 142. The data object 136
includes data wherein the data comprises non-priority data
1-4 and priority data 1-3. Note that priority data may be more
important with regards to subsequent utilization of the data
object as compared to the non-priority data. In an example,
priority data includes header information, codec information,
and base frames associated with a compressed video file and
non-priority data includes different video frames of the com-
pressed video file.

The data object 136 may be stored in a dispersed storage
network (DSN) memory as a plurality of sets of encoded data
slices, wherein each set of encoded data slices corresponds to
encoding a plurality of data segments of the data object 136.
The segment set 138 represents data segments 1-8, wherein
each of the data segments are substantially the same size
created as a result of segmentation of the data object 136
without regard to non-priority data or priority data. Alterna-
tively, or in addition to, the data object 136 may be stored in
the DSN memory as a plurality of sets of priority encoded
data slices corresponding to encoding a plurality of priority
data segments of the data object 136. The segment set R 140

US 9,110,819 B2

17

represents priority data segments 2-4 and 6-8, wherein each
of the data segments are substantially the same size as corre-
sponding data segments 2-4, and 6-8 that contain priority data
of the plurality of data segments created as a result of seg-
mentation of the data object 136 to capture priority data 1-3.
Alternatively, or in addition to, the segment set P 142 repre-
sents priority data 1-3, wherein each of the data segments are
substantially the same size as corresponding priority data 1-3.
A method of storing data segments and priority data segments
is discussed in greater detail with reference to FIG. 9. A
method of retrieving data segments and priority data seg-
ments is discussed in greater detail with reference to FIG. 10.

Note that the storing of the plurality of sets of priority
encoded data slices provides a priority data retrieval reliabil-
ity improvement when the priority data segments are stored in
addition to data segments corresponding to priority data. Fur-
ther note that the storing of the plurality of sets of priority
encoded data slices provides a priority data retrieval reliabil-
ity improvement when the priority data is stored as priority
data segments rather than as data segments and when error
coding dispersal storage function parameters associated with
the encoding of the priority data segments provides more
reliable storage as compared to error coding dispersal storage
function parameters associated with the encoding of data
segments. Such differences in error coding dispersal storage
function parameters are discussed in greater detail with ref-
erence to FIG. 8B.

FIG. 8B is a diagram illustrating an example of encoding
data segments that includes a data object 136, a segment set
138, and a segment set P 142 of FIG. 8 A and a plurality of sets
of encoded data slices 139 and a plurality of sets of priority
encoded data slices 143. Each data segment of the segment set
138 is dispersed storage error encoded in accordance with
first error coding dispersal storage function parameters to
produce the plurality of sets of encoded data slices 139. For
example, data segment 3 is dispersed storage error encoded to
produce a set of encoded data slices 3__1-3__ 4, when a pillar
width is 4 of the first error coding dispersal storage function
parameters. Each priority data segment of the segment set P
142 is dispersed storage error encoded in accordance with
second error coding dispersal storage function parameters to
produce the plurality of sets of priority encoded data slices
143. For example, data segment P2 is dispersed storage error
encoded to produce a set of encoded data slices P2 1-P2_ 8,
when a pillar width is 8 of the second error coding dispersal
storage function parameters.

Note that the first error coding dispersal storage function
parameters may be determined such that dispersed storage
error encoding data segments containing only non-priority
data 1-4 of the segment set 138 to produce encoded data slices
of the plurality of sets of encoded data slices 139 in accor-
dance with the first error coding dispersal storage function
parameters will result in a desired level of non-priority data
retrieval reliability. For example, first error coding dispersal
storage function parameters that include a pillar width of 4
and a decode threshold of 3 are selected to provide a desired
level of non-priority data retrieval reliability. Note that
improved retrieval reliability is provided when a difference
between a pillar width and a decode threshold of the second
error coding dispersal storage function parameters is greater
than a difference between a pillar width and a decode thresh-
old of the first error coding dispersal storage function param-
eters. The second error coding dispersal storage function
parameters may be determined such that dispersed storage
error encoding priority data segments containing priority data
1-3 of the segment set P 142 to produce priority encoded data
slices of the plurality of sets of priority encoded data slices

10

15

20

25

30

35

40

45

50

55

60

65

18

143 in accordance with the second error coding dispersal
storage function parameters will result in a desired level of
priority data retrieval reliability. For example, second error
coding dispersal storage function parameters that include a
pillar width of 8 and a decode threshold of 5 are selected to
provide a higher level of priority data retrieval reliability as
compared to utilizing first error coding dispersal storage
function parameters when the pillar width is 4 and the decode
threshold is 3.

FIG. 9 is a flowchart illustrating an example segmenting
data, which includes some similar steps to FIG. 6. The
method begins with steps 102-114 of FIG. 6 and then contin-
ues with step 148 where a processing module encodes data
into a plurality of sets of encoded data slices in accordance
with first error coding dispersal storage function parameters.
Note that the processing module may encode all data (e.g.,
non-priority data and priority data) or the processing module
encodes the non-priority data alone. For example, the pro-
cessing module identifies non-priority data segments of the
data and encodes the non-priority data segments into the
plurality of sets of encoded data slices in accordance with the
first error coding dispersal storage function parameters,
wherein the first error coding dispersal storage function
parameters include a first pillar width and a first decode
threshold optimized for data recovery (e.g., retrieving and
decoding) speed and non-optimal for data recovery reliabil-
ity. The method continues at step 150 where the processing
module outputs the plurality of sets of encoded data slices to
the first dispersed storage (DS) unit storage set of a dispersed
storage network (DSN) memory for storage therein. Next, the
processing module updates a storage location table to asso-
ciate the plurality of sets of encoded data slices with the data.

The method continues at step 152 where the processing
module determines whether to create priority data segments
(e.g., and store them in the DSN memory as encoded data
slices) based on one or more of requirements, metadata, a data
object, a determination of the priority/non-priority data,
which data segments from the original segment set include
priority data, a command, a predetermination, a lookup, DS
unit performance history, and DS unit estimated perfor-
mance. For example, the processing module determines to
create more data segments when the metadata identifies pri-
ority data and when the performance history of the first DS
unit storage set is unfavorable as compared to the require-
ments (e.g., the DS unit reliability history or DS unit esti-
mated reliability is below a threshold). The method ends at
step 154 when the processing module determines not to create
priority data segments. The method continues to step 156
when the processing module determines to create priority
data segments.

The continues at step 156 where the processing module
determines an approach to create priority data segments
based on one or more of the requirements, the data object, a
determination of the priority/non-priority data, a size of the
priority data, a location of the priority data, which data seg-
ments from the original segment set include priority data, a
command, a predetermination, a lookup, DS unit perfor-
mance history, and DS unit estimated performance. For
example, the processing module determines to create a seg-
ment set R when the size of the priority data is substantially
contained within a data segment of the original data segment
set described above (e.g., without overlapping two or more
data segments). Note that the processing module may utilize
the data segments of the original segment set to produce (e.g.,
copy from a temporary memory) the data segments of the
segment set R. As another example, the processing module
determines to create a segment set P when the size of the

US 9,110,819 B2

19

priority data is substantially not contained within a data seg-
ment of the original data segment set (e.g., substantially over-
lapping two or more data segments).

The method continues at step 158 where the processing
module determines priority data segments of the data. Such a
determination includes at least one of identifying content of
the data having a desired priority level, wherein data seg-
ments containing the content are identified as the priority data
segments, determining a desired relationship between a data
recovery speed and a data recovery reliability, and determin-
ing the priority data segments based on the desired relation-
ship, receiving an indicator that identifies the priority data
segments, and accessing a table regarding the data to identity
the priority data segments. For example, the processing mod-
ule copies the data segments from the original segment set
that correspond to priority data of the data object when the
approach is to form a segment set R of priority data segments.
As another example, the processing module forms each pri-
ority data segment from the priority data sections of the data
object when the approach is to form a segment set P of priority
data segments that replicate the priority data. As yet another
example, the processing module encodes video data into the
plurality of sets of encoded data slices in accordance with the
first error coding dispersal storage function parameters,
wherein the plurality of set of encoded data slices is retrieved
in response to a video on demand request and the processing
module determines key frames of the video data as the prior-
ity data segments.

The method continues at step 160 where the processing
module saves priority data segment information to facilitate
subsequent retrieval where the priority data segment infor-
mation may include one or more of a location of the priority
data in the data object, a size of the priority data segments, a
size of the priority data, and a number of priority data sec-
tions. For example, the processing module saves the priority
data segment information as data appended to one or more of
the priority data segments. As another example, the process-
ing module saves the priority data segment information as a
separate data object in the DSN memory as a plurality of sets
of encoded priority data segment information slices.

The method continues at step 162 where the processing
module determines second error coding dispersal storage
function parameters (e.g., second operational parameters)
and a second DS unit storage set based on one or more of the
determined approach to create priority data segments, the
priority data segments, the requirements, the metadata, the
DS unit performance history, the DS unit estimated perfor-
mance, the first DS unit storage set, the first error coding
dispersal storage function parameters, the data object, a com-
mand, a predetermination, and a vault lookup. For example,
the processing module determines the second error coding
dispersal storage function parameters and the second DS unit
storage set to be substantially identical to the first error coding
dispersal storage function parameters and the first DS unit
storage set when a nominal level of improved retrieval reli-
ability is required. As another example, the processing mod-
ule determines the second error coding dispersal storage
function parameters and the second DS unit storage set to be
substantially different from the first error coding dispersal
storage function parameters and the first DS unit storage set.
As a specific example, the processing module determines the
second error coding dispersal storage function parameters to
include a second pillar width and a second decode threshold
optimized for data recovery reliability and non-optimal for
data recovery speed when an improved level of retrieval reli-
ability is required.

40

45

20

The method continues at step 164 where the processing
module encodes the priority data segments in accordance
with the second error coding dispersal storage function
parameters to produce a plurality of sets of priority encoded
data slices. The method continues at step 166 where the
processing module outputs the plurality of sets of priority
encoded data slices to the second DS unit storage set of the
DSN memory for storage therein. Next, the processing mod-
ule updates the storage location table to associate the plurality
of sets of priority encoded data slices with the priority data
segments. The method repeats back to step 152 to potentially
create more priority and/or redundant data segments.

FIG. 10 is aflowchart illustrating an example of re-creating
data, which includes similar steps to FIG. 6 and FIG. 9. The
method begins with step 168 where a processing module
receives a retrieve data object message (e.g., from any one of
a user device, a storage integrity processing unit, a dispersed
storage (DS) processing unit, a DS managing unit, and a DS
unit). The retrieve data object message includes one or more
of'a data object name, a data object size, a data type, an input
metadata, a priority data indicator, a priority indicator, a secu-
rity indicator, a performance indicator, and input require-
ments. The method continues at steps 112-114 of FIG. 6 and
then continues with step 170 where the processing module
retrieves a set of encoded data slices from a first DS unit
storage set of a dispersed storage network (DSN) memory,
wherein a data segment was encoded in accordance with first
error coding dispersal storage function parameters to produce
the set of encoded data slices.

The method continues at step 172 where the processing
module determines whether the set of encoded data slices are
associated with a data segment or a priority data segment to
facilitate re-creating data segments. Such a determination
may be based on one or more of accessing a storage location
table to identify the set of encoded data slices with the data,
accessing the storage location table to identify the second set
of'encoded data slices, the first error coding dispersal storage
function parameters, an origin of retrieval of the set of
encoded data slices, a command, a message, and a query. The
processing module decodes the set of encoded data slices in
accordance with the first error coding dispersal storage func-
tion parameters to produce the data segment when the data
segment is not the priority data segment.

The processing module determines whether to decode the
set of encoded data slices in accordance with the first error
coding dispersal storage function parameters or to decode a
second set of encoded data slices in accordance with second
error coding dispersal storage function parameters when the
data segment is the priority data segment, wherein the data
segment was encoded in accordance with the second error
coding dispersal storage function parameters to produce the
second set of encoded data slices, wherein the first error
coding dispersal storage function parameters include a first
pillar width and a first decode threshold optimized for data
recovery speed and non-optimal for data recovery reliability
and the second error coding dispersal storage function param-
eters include a second pillar width and a second decode
threshold optimized for data recovery reliability and non-
optimal for data recovery speed.

Such determining whether to decode the set of encoded
data slices or the second set of encoded data slices includes at
least one of determining a desired relationship between the
data recovery speed and the data recovery reliability, decod-
ing the set of encoded data slices when the desired relation-
ship compares favorably to a relationship threshold, and
decoding the second set of encoded data slices when the
desired relationship compares unfavorably to the relationship

US 9,110,819 B2

21

threshold, receiving an indicator that indicates whether to
decode the set of encoded data slices or the second set of
encoded data slices, and accessing a table based on identity of
the data segment to determine whether to decode the set of
encoded data slices or the second set of encoded data slices.
For example, the processing module retrieves the set of
encoded data slices in response to a video on demand request
and determines whether the data segment corresponds to a
key frame of video data. Next, the processing module identi-
fies the data segment as a priority data segment and deter-
mines to decode the second set of encoded data slices when
the data segment corresponds to the key frame (e.g., priority
data).

The method continues at step 174 where the processing
module determines if enough data segments have been re-
created. Such a determination may be based on one or more of
a comparison of the number of re-created data segments to a
number of data segments of the data object, a vault lookup, a
command, a message, a predetermination, a priority data
indicator, metadata, and information received in the retrieve
data object message. For example, the processing module
determines that enough data segments have been received
when all of the data segments have been received and meta-
data in the retrieve data object message indicated that all of
the data segments are required for this retrieval transaction.
As another example, the processing module determines that
enough data segments have not been received when all of the
data segments have not been received and metadata in the
retrieve data object message indicates that all of the data
segments are required for this retrieval transaction.

As yetanother example, the processing module determines
that enough data segments have been received when all of the
data segments have not been received, data segments contain-
ing priority data have been received that contain all of the
priority data, and metadata in the retrieve data object message
indicates that only the priority data is required for this
retrieval transaction. As a further example, the processing
module determines that not enough data segments have been
received when all of the data segments have not been
received, not enough data segments containing priority data
have been received such that at least some of the priority data
has not been retrieved, and metadata in the retrieve data object
message indicates that only the priority data is required for
this retrieval transaction.

The method branches to step 180 when the processing
module determines that enough data segments have not been
received. The method continues to step 176 when the pro-
cessing module determines that enough data segments have
been received. The method continues at step 176 where the
processing module re-creates priority data and/or non-prior-
ity data by aggregating the successfully re-created data seg-
ments and priority data segments. The method continues at
step 178 where the processing module sends the data to the
requester.

The method continues at step 180 where the processing
module determines whether all of the priority data segments
have been recovered (e.g., retrieving a segment set R and/or
retrieving a segment set P and decoding the segments) based
on one or more of previously recovered data segments, a vault
lookup, a message, a command, and a list of segment sets
tried. The method branches to step 184 when the processing
module determines that all priority data segments have not
been recovered. The method continues to step 182 when the
processing module determines that all priority data segments
have been recovered. The method continues at step 182 where
the processing module sends a fail message to the requester
and/or the DS managing unit.

30

40

45

50

22

The method continues at step 184 where the processing
module determines additional priority data segments to try
next based on one or more of previously recovered priority
data segments, a vault lookup, a message, a command, and a
list of segment sets recovered. For example, the processing
module determines to recover an additional priority data seg-
ment set after trying to recover the original data segment set.
As another example, the processing module determines to try
segment set P after trying to retrieve the original data segment
set and a priority segment set. The method continues at step
162 of FIG. 9.

The method continues at step 190 where the processing
module sends a retrieve slice command to at least a DS unit of
the second DS unit storage set to retrieve a second set of
encoded data slices from a second DS unit storage set of the
DSN memory. The processing module receives priority
encoded data slices from at least one DS unit of the second DS
unit storage set in response to the retrieve slice command. The
processing module retrieves at least a read threshold number
of'encoded priority data slices from the second DS unit stor-
age set corresponding to each of the desired priority data
segments. The method continues at step 192 where the pro-
cessing module dispersed storage error decodes the second
set of encoded data slices in accordance with the second error
coding dispersal function parameters to produce the priority
data segment as a recovered data segment. The method
repeats back to step 172 to fully re-create data segments and
determine if enough data segments have been re-created to
facilitate aggregating data segments to reproduce the data.

FIG. 11 is a flowchart illustrating an example of caching
encoded data slices, which includes many steps similar to
FIG. 6. The method begins with steps 102,108,112,114, 116,
118 of FIG. 6 and then continues with step 194 where a
processing module determines which encoded data slices to
cache based on one or more of a comparison of dispersed
storage (DS) unit access latency history to a threshold, DS
unit performance history, a DS unit storage set, error coding
dispersal storage function parameters, metadata, require-
ments, a vault lookup, a command, and information received
in the store data object message. For example, the processing
module determines the slices to cache when the slices corre-
spond to the DS units with an access latency time perfor-
mance that is above a threshold. Alternatively, the processing
module skips step 108 to enable always caching the encoded
data slices not subject to DS unit performance history.

The method continues at step 196 where the processing
module caches the slices that are to be cached as cached
encoded data slices. For example, the processing module
determines to temporarily store the encoded data slices in one
or more memories of one or more of a DS processing unit, a
user device, a DS managing unit, a storage integrity process-
ing unit, and a DS unit. The processing module determines
cache location based on one or more of a candidate cache
memory list, memory availability indicator, a size indicator of
the encoded data slices to cache, a performance indicator of
cache memory, requirements, the DS unit storage set, the
error coding dispersal storage function parameters, a vault
lookup, a command, a predetermination, and information
received in the store data object message. As a specific
example, the processing module caches the encoded data
slices in a memory associated with a DS processing unit such
that the encoded data slices are readily available for retrieval
with a relatively low access latency. Alternatively, or in addi-
tion to, the processing module facilitates storage of the
encoded data slice in temporary memory to produce a tem-
porarily stored encoded data slice when estimated DS unit
performance level compares unfavorably with a performance

US 9,110,819 B2

23

threshold, wherein the temporarily stored encoded data slice
is retrieved in response to a retrieval request of the encoded
data slice when confirmation of a DS unit storing the encoded
data slice has not been received.

The method continues at step 198 where the processing
module updates a storage location table (e.g., a virtual dis-
persed storage network (DSN) address to physical location
table) to associate a slice name with a temporary memory
identifier (ID) of the temporary memory. For example, the
processing module updates the virtual DSN address to physi-
cal location table to include pillars 1-9 as stored in DS units
1-9, pillar 10 as stored in a DS processing unit cache memory,
and pillars 11-16 is stored in DS units 11-16 when the pillar
width is 16 and the read threshold is 10.

The method continues at step 200 where the processing
module determines whether the slices are available for
retrieval from the DS units based on receiving a response
from the DS units, wherein the response indicates that the
encoded data slices are available for retrieval. The method
advances to step 202 when the processing module determines
that the slices are available for retrieval from the DS units. The
method continues at step 202 where the processing module
updates a storage location table (e.g., the virtual DSN address
to physical location table) to associate slice names of the
encoded data slices with DS unit IDs of the DS unit storage set
and to delete an association of the slice names with the tem-
porary memory ID of the temporary memory. The method
continues at step 204 where the processing module facilitates
deleting of the cached encoded data slices from the temporary
memory.

In an example of operation of a corresponding retrieval
sequence, the processing module receives a retrieve data
object message from a requester and determines DS unit
locations based on a lookup of the virtual DSN address to
physical location table. Note that the table may indicate a
combination of DS units and or cache memory locations for at
least some of encoded data slices to be retrieved. The pro-
cessing module determines error coding dispersal storage
function parameters based on a vault lookup. The processing
module retrieves the encoded data slices from the determined
locations dispersed storage error decodes the encoded data
slices to produce data segments in accordance with the error
coding dispersal storage function parameters. The processing
module aggregates the data segments to produce the data
object. The processing module sends the data object to the
requester.

FIG. 12 is a flowchart illustrating an example of caching
rebuilt encoded data slices which includes many similar steps
to FIGS. 6, 7, and 11. The method begins with step 206 where
a processing module determines to rebuild data where the
data may be at least a portion of a data object stored as
encoded data slices in a dispersed storage network (DSN)
memory. Such a determination may be based on one or more
of detection of a missing slice, detection of a corrupted slice,
detection of a tampered slices, detection of a failed memory
device, detection of a failed DS unit, detection of a failed site,
amessage, acommand, and a DS unit query. For example, the
processing module receives a message from a DS unit indi-
cating that one of four hard drive memories has failed and has
been replaced with a new hard drive memory. The method
continues with steps 114, 108, and 112 of FIG. 6. The method
continues with steps 124-126 of FIG. 7 to reproduce a data
object corresponding to at least an encoded data slice to be
rebuilt. Note that the processing module may obtain an
encoded data slice and an associated slice name for storage in
a DS unit and/or a temporary memory wherein the obtaining
the encoded data slice comprises at least one of receiving the

10

15

20

25

30

35

40

45

50

55

60

65

24

encoded data slice, creating the encoded data slice, rebuilding
the encoded data slice from a set of associated encoded data
slices, and receiving the encoded data slice as a rebuilt
encoded data slice that was rebuilt from the set of associated
encoded data slices.

The method continues at step 208 where the processing
module dispersed storage error encodes a data segment asso-
ciated with the portion of the data object to be rebuilt to
produce an encoded data slice as a rebuilt slice in accordance
with error coding dispersal storage function parameters. The
method continues at step 210 where the processing module
sends the encoded data slice to an associated DS unit of a DS
unit storage for storage therein. Alternatively, the processing
module sends the encoded data slice through the associated
DS unit subsequent to step 196 where the processing module
caches the rebuilt slice.

The method continues at step 212 where the processing
module determines a temporary memory based on at least one
ofa slice name, a size of the encoded data slice, a comparison
of DS unit access latency history to a threshold, a DS unit
performance history, the DS unit storage set, the error coding
dispersal storage function parameters, metadata, require-
ments, a vault lookup, a command, and information obtained
associated with the encoded data slice, wherein the temporary
memory includes one or more of another DS unit, local
memory, cache memory, and main memory. The method con-
tinues at step 196 of FIG. 11 to cache the rebuilt slice in the
temporary memory. The method continues at step 198 of F1G.
11.

The method continues at step 214 where the processing
module determines whether the slice is available for retrieval
from the DS unit based on receiving a response from the DS
unit, wherein the response indicates that the encoded data
slice is available for retrieval. The method advances to step
216 when the processing module determines that the slice is
available for retrieval from the DS unit. The method continues
at step 216 where the processing module updates a storage
location table (e.g., the virtual DSN address to physical loca-
tion table) to associate the slice name of the encoded data slice
with a DS unit ID of the DS unit and to delete an association
of the slice name with the temporary memory ID of the
temporary memory. The method continues at step 217 where
the processing module facilitates deleting of the cached
encoded data slice from the temporary memory.

FIG. 13 is another flowchart illustrating another example
of caching encoded data slices, which includes many similar
steps to FIGS. 6, 11, and 12. The method begins with steps
102, 108, 114, 112, 116, and 118 of FIG. 6 to produce
encoded data slices and to send encoded data slices to a DS
unit storage set for storage therein. The method continues
with step 212 of FIG. 12 and then steps 196-198 of FIG. 11 to
cache the encoded data slices as temporarily stored encoded
data slices. The method continues at step 218 where the
processing module determines whether the encoded data slice
are available for retrieval from the DS unit storage set based
on receiving response from the DS units, wherein the
responses indicates that a corresponding encoded data slice is
available for retrieval and that a DS unit storage set perfor-
mance is above a threshold based on performance indicator.
The method advances to steps 202-204 of FIG. 11 when the
processing module determines that the encoded data slices
are available for retrieval from the DS unit storage set and that
the DS unit storage set performance is above the threshold.

In aretrieval example of operation, the processing module
receives a retrieval request and determines whether to retrieve
a temporarily stored encoded data slice from the temporary
memory or an encoded data slice from the DS unit in response

US 9,110,819 B2

25

to the retrieval request. Such a determination may be based on
one or more of a DS unit performance indicator, system
performance indicator, the DS unit reliability indicator, and
an access latency estimate. Next, the processing module
sends a read request to a DS unit of the DS unit storage set
regarding retrieval of the encoded data slice when selecting
the encoded data slice from the DS unit in response to the
retrieval request.

As may be used herein, the terms “substantially” and
“approximately” provides an industry-accepted tolerance for
its corresponding term and/or relativity between items. Such
an industry-accepted tolerance ranges from less than one
percent to fifty percent and corresponds to, but is not limited
to, component values, integrated circuit process variations,
temperature variations, rise and fall times, and/or thermal
noise. Such relativity between items ranges from a difference
of a few percent to magnitude differences. As may also be
used herein, the term(s) “operably coupled to”, “coupled to”,
and/or “coupling” includes direct coupling between items
and/or indirect coupling between items via an intervening
item (e.g., anitem includes, but is not limited to, a component,
an element, a circuit, and/or a module) where, for indirect
coupling, the intervening item does not modify the informa-
tion of a signal but may adjust its current level, voltage level,
and/or power level. As may further be used herein, inferred
coupling (i.e., where one element is coupled to another ele-
ment by inference) includes direct and indirect coupling
between two items in the same manner as “coupled to”. As
may even further be used herein, the term “operable to” or
“operably coupled to” indicates that an item includes one or
more of power connections, input(s), output(s), etc., to per-
form, when activated, one or more its corresponding func-
tions and may further include inferred coupling to one or
more other items. As may still further be used herein, the term
“associated with”, includes direct and/or indirect coupling of
separate items and/or one item being embedded within
another item. As may be used herein, the term “compares
favorably”, indicates that a comparison between two or more
items, signals, etc., provides a desired relationship. For
example, when the desired relationship is that signal 1 has a
greater magnitude than signal 2, a favorable comparison may
be achieved when the magnitude of signal 1 is greater than
that of signal 2 or when the magnitude of signal 2 is less than
that of signal 1.

While the transistors in the above described figure(s) is/are
shown as field effect transistors (FETs), as one of ordinary
skill in the art will appreciate, the transistors may be imple-
mented using any type of transistor structure including, but
not limited to, bipolar, metal oxide semiconductor field effect
transistors (MOSFET), N-well transistors, P-well transistors,
enhancement mode, depletion mode, and zero voltage thresh-
old (VT) transistors.

The present invention has also been described above with
the aid of method steps illustrating the performance of speci-
fied functions and relationships thereof. The boundaries and
sequence of these functional building blocks and method
steps have been arbitrarily defined herein for convenience of
description. Alternate boundaries and sequences can be
defined so long as the specified functions and relationships
are appropriately performed. Any such alternate boundaries
or sequences are thus within the scope and spirit of the
claimed invention.

The present invention has been described, at least in part, in
terms of one or more embodiments. An embodiment of the
present invention is used herein to illustrate the present inven-
tion, an aspect thereof, a feature thereof, a concept thereof,
and/or an example thereof. A physical embodiment of an

10

15

20

25

30

35

40

45

50

55

60

26

apparatus, an article of manufacture, a machine, and/or of a
process that embodies the present invention may include one
or more of the aspects, features, concepts, examples, etc.
described with reference to one or more of the embodiments
discussed herein.

The present invention has been described above with the
aid of functional building blocks illustrating the performance
of certain significant functions. The boundaries of these func-
tional building blocks have been arbitrarily defined for con-
venience of description. Alternate boundaries could be
defined as long as the certain significant functions are appro-
priately performed. Similarly, flow diagram blocks may also
have been arbitrarily defined herein to illustrate certain sig-
nificant functionality. To the extent used, the flow diagram
block boundaries and sequence could have been defined oth-
erwise and still perform the certain significant functionality.
Such alternate definitions of both functional building blocks
and flow diagram blocks and sequences are thus within the
scope and spirit of the claimed invention. One of average skill
in the art will also recognize that the functional building
blocks, and other illustrative blocks, modules and compo-
nents herein, can be implemented as illustrated or by discrete
components, application specific integrated circuits, proces-
sors executing appropriate software and the like or any com-
bination thereof.

What is claimed is:

1. A computer readable storage medium comprises:

afirst memory section storing operational instructions that,
when executed by a computing device, causes the com-
puting device to:
determine a performance based indication regarding

storage of a data segment as a set of encoded data
slices;

a second memory section storing operational instructions
that, when executed by the computing device, causes the
computing device to:
compare the performance based indication with a per-

formance threshold; and
a third memory section storing operational instructions
that, when executed by the computing device, causes the
computing device to:
when the performance based indication compares unfavor-
ably with the performance threshold:
decode the set of encoded data slices in accordance with
error coding dispersal storage function parameters to
reproduce the data segment;

adjust the error coding dispersal storage function param-
eters based on the unfavorable comparison of the per-
formance based indication with the performance
threshold to produce performance adjusted error cod-
ing dispersal storage function parameters;

encode the reproduced data segment in accordance with
the performance adjusted error coding dispersal stor-
age function parameters to produce a second set of
encoded data slices; and

select a storage set of encoded data slices from the set of
encoded data slices and the second set of encoded data
slices based on a difference between the performance
adjusted error coding dispersal storage function
parameters and the error coding dispersal storage
function parameters.

2. The computer readable storage medium of claim 1 fur-

ther comprises:

a fourth memory section storing operational instructions
that, when executed by the computing device, causes the
computing device to:

US 9,110,819 B2

27

update a storage location table to associate a correspond-
ing slice name of a set of slice names with a corre-
sponding encoded data slice of the storage set of
encoded data slices.

3. The computer readable storage medium of claim 1 fur-
ther comprises:

a fourth memory section storing operational instructions
that, when executed by the computing device, causes the
computing device to:
output each of the encoded data slices of the storage set

of'encoded data slices that is selected from the second
set of encoded data slices to a dispersed storage net-
work (DSN) memory for storage therein.

4. The computer readable storage medium of claim 1,
wherein the third memory section further stores operational
instructions that, when executed by the computing device,
causes the computing device to adjust the error coding dis-
persal storage function parameters by:

determining desired error coding dispersal storage func-
tion parameters based on the performance threshold and
the performance based indication;

determining a difference between the desired error coding
dispersal storage function parameters and the error cod-
ing dispersal storage function parameters to produce a
parameters difference; and

adjusting the error coding dispersal storage function
parameters based on the parameters difference, wherein
determining at least one of the desired error coding
dispersal storage function parameters and the param-
eters difference is based on at least one of: a set of
dispersed storage (DS) units, the error coding dispersal
storage function parameters, a vault lookup, acommand,
a message, a predetermination, a DS unit query, a his-
torical DS unit performance level, an estimated DS unit
performance level, storage requirements, and metadata.

5. The computer readable storage medium of claim 1,
wherein the third memory section further stores operational
instructions that, when executed by the computing device,
causes the computing device to:

when the performance based indication compares unfavor-
ably with the performance threshold as a result of under-
performance, adjust the error coding dispersal storage
function parameters by:

increase a difference between a decode threshold and a
pillar width; and

adjust an encoding matrix in accordance with the increas-
ing of the difference.

6. The computer readable storage medium of claim 1,
wherein the third memory section further stores operational
instructions that, when executed by the computing device,
causes the computing device to:

when the performance based indication compares unfavor-
ably with the performance threshold as a result of over-
performance, adjust the error coding dispersal storage
function parameters by:

decrease a difference between a decode threshold and a
pillar width; and

adjust an encoding matrix in accordance with the decreas-
ing of the difference.

7. The computer readable storage medium of claim 1,
wherein the third memory section further stores operational
instructions that, when executed by the computing device,
causes the computing device to select the storage set of
encoded data slices by:

selecting the set of encoded data slices; and

selecting at least one encoded data slice of the second set of
encoded data slices.

25

30

40

45

55

65

28

8. A computer readable storage medium comprises:

afirst memory section storing operational instructions that,
when executed by a computing device, causes the com-
puting device to:
determine that storage of data requires updating,

wherein the data is encoded in accordance with a
dispersed storage error encoding function using dis-
persed storage error encoding parameters to produce a
plurality of sets of encoded data slices, which is stored
in memory of a dispersed storage network (DSN),
wherein the dispersed storage error encoding param-
eters includes a total number of encoded data slices
per set of encoded data slices and a decode threshold
number of encoded data slices that are required from
a set of encoded data slices to recover a data segment
of the data;

a second memory section storing operational instructions
that, when executed by the computing device, causes the
computing device to:
for a first type of updating of the storage of the data:

increase the total number while maintaining the
decode threshold number;
for each of the sets of encoded data slices of the
plurality of sets of encode data slices:
create at least one more encoded data slice inaccor-
dance with the dispersed storage error encoding
function and the increased total number; and
send the at least one more encoded data slice to the
memory of the DSN for storage therein; and

a third memory section storing operational instructions
that, when executed by the computing device, causes the
computing device to:
for a second type of updating of the storage of the data:

increase the total number and increasing the decode
threshold number;

recover the data from retrieved encoded data slices of
the plurality of sets of encoded data slices;

encode the recovered data in accordance with the
dispersed storage error encoding function using the
increased total number and the increased decode
threshold number to produce an updated plurality
of sets of encoded data slices; and

send the updated plurality of sets of encoded data
slices to the memory of the DSN for storage
therein.

9. The computer readable storage medium of claim 8,
wherein the first memory section storing operational instruc-
tions that, when executed by the computing device, causes the
computing device to determine that storage of data requires
updating by one of:

determining under performance of the DSN with respect to
accessing the plurality of sets of encoded data slices; and

determining over performance of the DSN with respect to
accessing the plurality of sets of encoded data slices.

10. The computer readable storage medium of claim 8
further comprises:

a fourth memory section storing operational instructions
that, when executed by the computing device, causes the
computing device to:
for a third type of updating of the storage of the data:

decrease the total number while maintaining the
decode threshold number;
for each of the sets of encoded data slices of the
plurality of sets of encode data slices:
select at least one encoded data slice based on the
decreased total number and the total
number; and

US 9,110,819 B2

29

delete the selected at least one encoded data slice
from the memory of the DSN.

11. The computer readable storage medium of claim 8

further comprises:

a fourth memory section storing operational instructions
that, when executed by the computing device, causes the
computing device to:
for a third type of updating of the storage of the data:

decrease the decode threshold number and maintain-
ing the total number;

recovering the data from retrieved encoded data slices
of the plurality of sets of encoded data slices;

encode the recovered data in accordance with the
dispersed storage error encoding function using the
total number and the decreased decode threshold
number to produce another updated plurality of sets
of encoded data slices; and

send the other updated plurality of sets of encoded
data slices to the memory of the DSN for storage
therein.

12. The computer readable storage medium of claim 8

further comprises:

a fourth memory section storing operational instructions
that, when executed by the computing device, causes the
computing device to:
for a third type of updating of the storage of the data:

decrease the decode threshold number and decreasing
the total number;

recover the data from retrieved encoded data slices of
the plurality of sets of encoded data slices;

encode the recovered data in accordance with the
dispersed storage error encoding function using the
decreased total number and the decreased decode
threshold number to produce another updated plu-
rality of sets of encoded data slices; and

send the other updated plurality of sets of encoded
data slices to the memory of the DSN for storage
therein.

10

20

25

30

30

13. The computer readable storage medium of claim 8,
wherein the first memory section storing operational instruc-
tions that, when executed by the computing device, causes the
computing device to:

determine the type of updating based on a comparison of a

performance based indication with a performance
threshold.

14. The computer readable storage medium of claim 8,
wherein the second memory section storing operational
instructions that, when executed by the computing device,
causes the computing device to:

for each of the at least one more encoded data slice created

for the first type of updating of the storage of the data:

create a slice name to links the at least one more encoded
data slice to a correspond set of encoded data slices of
the plurality of sets of encoded data slices; and

update a storage location table to include the slices
names.

15. The computer readable storage medium of claim 8,
wherein the second memory section storing operational
instructions that, when executed by the computing device,
causes the computing device to send the at least one more
encoded data slice to the memory of the DSN by:

identifying storage units of the DSN that are storing the

plurality of sets of encoded data slices;

selecting at least one more storage unit of the DSN; and

sending the at least one more encoded data slice of each of

the plurality of sets of encoded data slices to the selected
at least one more storage unit.

16. The computer readable storage medium of claim 8,
wherein the third memory section storing operational instruc-
tions that, when executed by the computing device, causes the
computing device to send the updated plurality of sets of
encoded data slices to the memory of the DSN by:

selecting storage units of the DSN; and

sending the updated plurality of sets of encoded data slices

to the selected storage units.

#* #* #* #* #*

